
OOPs through JAVA Lecture Notes

UNIT-1

Need for oop paradigm

• The object oriented paradigm is a methodology for producing reusable software
components

• The object-oriented paradigm is a programming methodology that promotes the efficient
design and development of software systems using reusable components that can be
quickly and safely assembled into larger systems.

• Object oriented programming has taken a completely different direction and will place an
emphasis on object s and information. With object oriented programming, a problem will
be broken down into a number of units .these are called objects .The foundation of oop is
the fact that it will place an emphasis on objects and classes. There are number of
advantages to be found with using the oop paradigm, and some of these are oop paradigm

• Object oriented programming is a concept that was created because of the need to
overcome the problems that were found with using structured programming techniques.
While structured programming uses an approach which is top down, oop uses an
approach which is bottom up.

• A paradigm is a way in which a computer language looks at the problem to be solved.
We divide computer languages into four paradigms: procedural, object-oriented,
functional and declarative

• A paradigm shift from a function-centric approach to an object-centric approach to
software development

• A program in a procedural paradigm is an active agent that uses passive objects that we
refer to as data or data items.

• The basic unit of code is the class which is a template for creating run-time objects.

• Classes can be composed from other classes. For example, Clocks can be constructed as
an aggregate of Counters.

• The object-oriented paradigm deals with active objects instead of passive objects. We
encounter many active objects in our daily life: a vehicle, an automatic door, a
dishwasher and so on. The actions to be performed on these objects are included in the
object: the objects need only to receive the appropriate stimulus from outside to perform
one of the actions.

• A file in an object-oriented paradigm can be packed with all the procedures—called
methods in the object-oriented paradigm—to be performed by the file: printing, page-1

• copying,

deleting and so on. The program in this paradigm just sends the corresponding request to
the object

• Java provides automatic garbage collection, relieving the programmer of the need to
ensure that unreferenced memory is regularly deallocated.

Object Oriented Paradigm – Key Features

• Encapsulation

• Abstraction

• Inheritance

• Polymorphis

A Way of viewing World- Agents

• The word agent has found its way into a number of technologies. It has been applied to
aspects of artificial intelligence research and to constructs developed for improving the
experience provided by collaborative online social environments (MUDS, MOOs, and the
like). It is a branch on the tree of distributed computing. There are agent development
toolkits and agent programming languages.

• The Agent Identity class defines agent identity. An instance of this class uniquely
identifies an agent. Agents use this information to identify the agents with whom they are
interested in collaborating.

• The Agent Host class defines the agent host. An instance of this class keeps track of
every agent executing in the system. It works with other hosts in order to transfer agents.

• The Agent class defines the agent. An instance of this class exists for each agent
executing on a given agent host.

• OOP uses an approach of treating a real world agent as an object.

• Object-oriented programming organizes a program around its data (that is, objects) and a
set of well-defined interfaces to that data.

• An object-oriented program can be characterized as data controlling access to code by
switching the controlling entity to data.

Responsibility

• In object-oriented design, the chain-of-responsibility pattern is a design pattern consisting of
a source of command objects and a series of processing objects..

• Each processing object contains logic that defines the types of command objects that it can
handle; the rest are passed to the next processing object in the chain. A mechanism also
exists for adding new processing objects to the end of this chain. Page-2

• Primary motivation is the need for a platform-independent (that is, architecture- neutral)
language that could be used to create software to be embedded in various consumer
electronic devices, such as microwave ovens and remote controls.

• Objects with clear responsibilities
• Each class should have a clear responsibility.

• If you can't state the purpose of a class in a single, clear sentence, then perhaps your class
structure needs some thought.

• In object-oriented programming, the single responsibility principle states that every
class should have a single responsibility, and that responsibility should be entirely
encapsulated by the class. All its services should be narrowly aligned with that
responsibility.

Messages

• Message implements the Part interface. Message contains a set of attributes and a
"content".

• Message objects are obtained either from a Folder or by constructing a new Message
object of the appropriate subclass. Messages that have been received are normally
retrieved from a folder named "INBOX".

• A Message object obtained from a folder is just a lightweight reference to the actual
message. The Message is 'lazily' filled up (on demand) when each item is requested from
the message.

• Note that certain folder implementations may return Message objects that are pre-filled
with certain user-specified items. To send a message, an appropriate subclass of Message
(e.g., Mime Message) is instantiated, the attributes and content are filled in, and the
message is sent using the Transport. Send method.

• We all like to use programs that let us know what's going on. Programs that keep us
informed often do so by displaying status and error messages.

• These messages need to be translated so they can be understood by end users around the
world.

• The Section discusses translatable text messages. Usually, you're done after you move a
message String into a Resource Bundle.

• If you've embedded variable data in a message, you'll have to take some extra steps to
prepare it for translation.

Methods

• The only required elements of a method declaration are the method's return type, name,
a pair of parentheses, (), and a body between braces, {}.

• Two of the components of a method declaration comprise the method signature—the
method's name and the parameter types.

• More generally, method declarations have six components, in order:
• Modifiers—such as public, private, and others you will learn about later.

Page 4

• The return type—the data type of the value returned by the method, or void if the method
does not return a value.

• The method name—the rules for field names apply to method names as well, but the
convention is a little different.

• The parameter list in parenthesis—a comma-delimited list of input parameters, preceded
by their data types, enclosed by parentheses, (). If there are no parameters, you must use
empty parentheses.

• The method body, enclosed between braces—the method's code, including the
declaration of local variables, goes here.

Naming a Method
Although a method name can be any legal identifier, code conventions restrict method
names. By convention, method names should be a verb in lowercase or a multi-word
name that begins with a verb in lowercase, followed by adjectives, nouns, etc. In multi-
word names, the first letter of each of the second and following words should be
capitalized. Here are some examples:

run
run Fast getBackground
getFinalData compareTo
setX isEmpty

Typically, a method has a unique name within its class. However, a method might have
the same name as other methods due to method overloading.

Overloading Methods
• The Java programming language supports overloading methods, and Java can distinguish

between methods with different method signatures. This means that methods within a
class can have the same name if they have different parameter lists (there are some
qualifications to this that will be discussed in the lesson titled "Interfaces and
Inheritance").

Page 5

• In the Java programming language, you can use the same name for all the drawing
methods but pass a different argument list to each method. Thus, the data drawing class
might declare four methods named draw, each of which has a different parameter list.

• Overloaded methods are differentiated by the number and the type of the arguments
passed into the method.

• You cannot declare more than one method with the same name and the same number and
type of arguments, because the compiler cannot tell them apart.

• The compiler does not consider return type when differentiating methods, so you cannot
declare two methods with the same signature even if they have a different return type.

• Overloaded methods should be used sparingly, as they can make code much less
readable.

Classes

• In object-oriented terms, we say that your bicycle is an instance of the class of objects
known as bicycles. A class is the blueprint from which individual objects are created.

• Java classes contain fields and methods. A field is like a C++ data member, and a method
is like a C++ member function. In Java, each class will be in its own .java file.

Each field and method has an access level:
• private : accessible only in this class

• (package) : accessible only in this package

• protected : accessible only in this package and in all subclasses of this class

• public : accessible everywhere this class is available

• Each class has one of two possible access levels:
• (package) : class objects can only be declared and manipulated by code in this package

• Public : class objects can be declared and manipulated by code in any package.

• Object : Object-oriented programming involves inheritance. In Java, all classes (built-in
or user-defined) are (implicitly) subclasses of Object. Using an array of Object in the List
class allows any kind of Object (an instance of any class) to be stored in the list.
However, primitive types (int, char, etc) cannot be stored in the list.

• A method should be made static when it does not access any of the non-static fields of the
class, and does not call any non-static methods.

• Java class objects exhibit the properties and behaviors defined by its class. A class can
contain fields and methods to describe the behavior of an object. Current states of a
class‘s corresponding object are stored in the object‘s instance variables.

• Creating a class:

Pag
e 6

A class is created in the following way

Class <class name>
{
Member variables;
Methods;
}

• An object is a software bundle of related state and behavior. Software objects are often
used to model the real-world objects that you find in everyday life. This lesson explains
how state and behavior are represented within an object, introduces the concept of data
encapsulation, and explains the benefits of designing your software in this manner.
Class Variables – Static Fields

• We use class variables also know as Static fields when we want to share characteristics
across all objectswithin a class. When you declare a field to be static, only a single
instance of the associated variable is created common to all the objects of that class.
Hence when one object changes the value of a class variable, it affects all objects of the
class. We can access a class variable by using the name of the class, and not necessarily
using a reference to an individual object within the class. Static variables can be accessed
even though no objects of that class exist. It is declared using static keyword.

Class Methods – Static Methods
Class methods, similar to Class variables can be invoked without having an instance of
the class. Class methods are often used to provide global functions for Java programs. For
example, methods in the java.lang.Math package are class methods. You cannot call non-
static methods from inside a static method.

Bundling code into individual software objects provides a number of benefits, including:

• Modularity: The source code for an object can be written and maintained independently
of the source code for other objects. Once created, an object can be easily passed around
inside the system.

• Information -hiding: By interacting only with an object's methods, the details of its
internal implementation remain hidden from the outside world.

• Code re-use : If an object already exists (perhaps written by another software developer),
you can use that object in your program. This allows specialists to implement/test/debug
complex, task-specific objects, which you can then trust to run in your own code.

• Pluggability and debugging ease : If a particular object turns out to be problematic, you
can simply remove it from your application and plug in a different object as its
replacement. This is analogous to fixing mechanical problems in the real world. If a bolt
breaks, you replace it, not the entire machine.

An instance or an object for a class is created in the
following way <object name>=new
<constructor>();

<class
name>

Encapsulation:

• Encapsulation is the mechanism that binds together code and the data
it manipulates, and keeps both safe from outside interference and
misuse.

Page 7

• One way to think about encapsulation is as a protective wrapper that prevents the code
and data from being arbitrarily accessed by other code defined outside the wrapper.

• Access to the code and data inside the wrapper is tightly controlled through a well-
defined interface.

• To relate this to the real world, consider the automatic transmission on an automobile.

• It encapsulates hundreds of bits of information about your engine, such as how much we
are accelerating, the pitch of the surface we are on, and the position of the shift.

• The power of encapsulated code is that everyone knows how to access it and thus can use
it regardless of the implementation details—and without fear of unexpected side effects.

Polymorphism:

Polymorphism (from the Greek, meaning ―many forms‖) is a feature that allows one
interface to be used for a general class of actions.

• The specific action is determined by the exact nature of the situation. Consider a stack
(which is a last-in, first-out list). We might have a program that requires three types of
stacks. One stack is used for integer values, one for floating-point values, and one for
characters. The algorithm that implements each stack is the same, even though the data
being stored differs.

• In Java we can specify a general set of stack routines that all share the same names.
More generally, the concept of polymorphism is often expressed by the phrase ―one
interface, multiple methods.‖This means that it is possible to design a generic interface to
a group of related activities.

• This helps reduce complexity by allowing the same interface to be used to specify a
general class of action.

• Polymorphism allows us to create clean, sensible, readable, and resilient code.

class Hierarchies (Inheritance):

• Object-oriented programming allows classes to inherit commonly used state and behavior
from other classes. Different kinds of objects often have a certain amount in common
with each other.

• In the Java programming language, each class is allowed to have one direct superclass,
and each superclass has the potential for an unlimited number of subclasses:

• Mountain bikes, road bikes, and tandem bikes, for example, all share the characteristics
of bicycles (current speed, current pedal cadence, current gear). Yet each also defines
additional features that make them different: tandem bicycles have two seats and two sets
of handlebars; road bikes have drop handlebars; some mountain bikes have an additional
chain ring, giving them a lower gear ratio. In this example, Bicycle now becomes the
super class of Mountain Bike, Road Bike, and Tandem Bike.

• The syntax for creating a subclass is simple. At the beginning of your class declaration,
use the extends keyword, followed by the name of the class to inherit from:

Page 8

class <sub class> extends <super class> {
// new fields and methods defining a sub class would go here

}

The different types of inheritance are
1. Single level Inheritance.
2. Multilevel Inheritance.
3. Hierarchical inheritance.
4. Multiple inheritance.
5. Hybrid inheritance.
Multiple,hybrid inheritance is not used in the way as other inheritances but it needs a
special concept called interfaces.

Method Binding:

• Binding denotes association of a name with a class.
• Static binding is a binding in which the class association is made during compile time.

This is also called as early binding.
• Dynamic binding is a binding in which the class association is not made until the object is

created at execution time. It is also called as late binding.

Abstraction:
Abstraction in Java or Object oriented programming is a way to segregate

implementation from interface and one of the five fundamentals along with
Encapsulation, Inheritance, Polymorphism, Class and Object.

• An essential component of object oriented programming is Abstraction
• Humans manage complexity through abstraction.
• For example people do not think a car as a set of tens and thousands of individual parts.

They think of it as a well defined object with its own unique behavior.
• This abstraction allows people to use a car ignoring all details of how the engine,

transmission and braking systems work.
• In computer programs the data from a traditional process oriented program can be

transformed by abstraction into its component objects.
• A sequence of process steps can become a collection of messages between these

objects.Thus each object describes its own behavior.

Overriding:
• In a class hierarchy when a sub class has the same name and type signature as a method

in the super class, then the method in the subclass is said to override the method in the
super class.

• When an overridden method is called from within a sub class, it will always refer to the
version of that method defined by the sub class.

• The version of the method defined by the super class will be hidden.

Page 9

Exceptions:
• An exception is an abnormal condition that arises in a code sequence at run time.
• In other words an exception is a run time error.
• A java exception is an object that describes an exceptional condition that has occurred in

a piece of code.
• When an exceptional condition arises, an object representing that exception is created and

thrown in the method that caused the error.
• Now the exception is caught and processed.

Summary of oops concepts

• Object-oriented programming (OOP) is a programming paradigm that represents
concepts as "objects" that have data fields (attributes that describe the object) and
associated procedures known as methods. Objects, which are usually instances of classes,
are used to interact with one another to design applications and computer programs.

• Object-oriented programming is an approach to designing modular, reusable software
systems.

• The goals of object-oriented programming are:
• Increased understanding.
• Ease of maintenance
• Ease of evolution.
• Object orientation eases maintenance by the use of encapsulation and information hiding.

•
Object-Oriented Programming – Summary of Key Terms

Definitions of some of the key concepts in Object Oriented Programming(OOP).

Term Definition

Abstract A user-defined data type, including both attributes (its state)
Data Type and methods (its behaviour). An object oriented language will

include means to define new types (see class) and create
instances of those classes (see object). It will also provide a
number of primitive types.

Aggregation Objects that are made up of other objects are known as
aggregations. The relationship is generally of one of two types:

• Composition – the object is composed of other objects. This
form of aggregation is a form of code reuse. E.g. A Car is
composed of Wheels, a Chassis and an Engine

• Collection – the object contains other objects. E.g. a List
contains several Items; A Set several Members.

Page 10

http://en.wikipedia.org/wiki/Object_(computer_science)
http://en.wikipedia.org/wiki/Class_(computer_science)

Attribute A characteristic of an object. Collectively the attributes of an
object describe its state. E.g. a Car may have attributes of
Speed, Direction, Registration Number and Driver.

Class The definition of objects of the same abstract data type. In Java
class is the keyword used to define new types.

Dynamic The identification at run time of which version of a method is
(Late) being called (see polymorphism). When the class of an object
Binding cannot be identified at compile time, it is impossible to use

static binding to identify the correct object method, so dynamic
binding must be used.

Encapsulation The combining together of attributes (data) and methods
(behaviour/processes) into a single abstract data type with a
public interface and a private implementation. This allows the
implementation to be altered without affecting the interface.

Inheritance The derivation of one class from another so that the attributes
and methods of one class are part of the definition of another
class. The first class is often referred to the base or parent class.
The child is often referred to as a derived or sub-class.

Derived classes are always ‗a kind of‘ their base classes.
Derived classes generally add to the attributes and/or behaviour
of the base class. Inheritance is one form of object-oriented
code reuse. E.g. Both Motorbikes and Cars are kinds of
MotorVehicles and therefore share some common attributes
and behaviour but may add their own that are unique to that
particular type.

Interface The behaviour that a class exposes to the outside world; its
public face. Also called its ‗contract‘. In Java interface is also a
keyword similar to class. However a Java interface contains no
implementation: it simply describes the behaviour expected of
a particular type of object, it doesn‘t so how that behaviour
should be implemented.

Member See attribute
Variable

Method The implementation of some behaviour of an object.

Message The invoking of a method of an object. In an object-oriented
application objects send each other messages (i.e. execute each
others methods) to achieve the desired behaviour.

Page 11

Object An instance of a class. Objects have state, identity and
behaviour.

Overloading Allowing the same method name to be used for more than one
implementation. The different versions of the method vary
according to their parameter lists. If this can be determined at
compile time then static binding is used, otherwise dynamic
binding is used to select the correct method as runtime.

Polymorphism Generally, the ability of different classes of object to respond
to the same message in different, class-specific ways.
Polymorphic methods are used which have one name but
different implementations for different classes. E.g. Both the
Plane and Car types might be able to respond to a turnLeft
message. While the behaviour is the same, the means of
achieving it are specific to each type.

Primitive The basic types which are provided with a given object-
Type oriented programming language. E.g. int, float, double, char,

Boolean

Static(Early) The identification at compile time of which version of a
Binding polymorphic method is being called. In order to do this the

compiler must identify the class of an object.

UNIT - 2 Java Basics

Java was conceived by James gosling, Patrick Naughton, chriswarth, Ed frank and Mike
Sheridan at sun Microsystems.

The original impetus for java was not internet instead primary motivation was the need
for a platform independent (i.e. Architectural neutral) independent language.

Java’s Byte code:

The key that allows java to solve the both security and portability problems is that the
output of a java compiler is not executable code rather it is byte code.

Byte code is highly optimized set of instructions designed to be executed by java runtime
systems, which is called Java Virtual Machine (JVM). JVM is interpreter for byte code.
Translating a java program into byte code helps makes it much easier to run a Program in
a wide variety of environments. The reason is straightforward: only the JVM needs to be
implemented for each platform. Once the run-time package exists for a given system, any
Java program can run on it.

Page 12

The Java Buzzwords:
No discussion of the genesis of Java is complete without a look at the Java buzzwords.
Although the fundamental forces that necessitated the invention of Java are portability
and security, other factors also played an important role in mol ding the final form of the
language. The key considerations were summed up by the Java team in the following list
of buzzwords:

• Simple
• Secure
• Portable
• Object-oriented
• Robust
• Multithreaded
• Architecture-neutral
• Interpreted
• High performance
• Distributed
• Dynamic

Simple
Java was designed to be easy for the professional programmer to learn and use
effectively. Assuming that you have some programming experience, you will not find
Java hard to master. If you already understand the basic concepts of object-oriented
programming, learning Java will be even easier. Best of all, if you are an experienced C+
+ programmer, moving to Java will require very little effort. Because Java inherits the C/
C++ syntax and many of the object-oriented features of C++

Robust
The multiplatform environment of the Web places extraordinary demands on a program,
because the program must execute reliably in a variety of systems. Thus, the ability to
create robust programs were given a high priority in the design of Java.
To gain reliability, Java restricts you in a few key areas, to force you to find your
mistakes early in program development. At the same time, Java frees you from having to
worry about many of the most common causes of programming errors. Because Java is a
strictly typed language, it checks your code at compile time. However, it also checks your
code at run time. To better understand how Java is robust, consider two of the main
reasons for program failure: memory management mistakes and mishandled exceptional
conditions (that is, run-time errors). Memory management can be a difficult, tedious task
in traditional programming environments. For example, in C/C++, the programmer must
manually allocate and free all dynamic memory. This sometimes leads to problems,
because programmers will either forget to free memory that has
been previously allocated or, worse, try to free some memory that another part of their
code is still using. Java virtually eliminates these problems by managing memory
allocation and deallocation for you. (In fact, deallocation is completely automatic,

Page 13

because Java provides garbage collection for unused objects.) Exceptional conditions in
traditional environments often arise in situations such as division by zero or ―file not
found,‖ and they must be managed with clumsy and hard-to-read constructs. Java helps in
this area by providing object-oriented exception handling. In a well-written Java
program, all run-time errors can—and should—be managed by your program.

Multithreaded
Java was designed to meet the real-world requirement of creating interactive, networked
programs. To accomplish this, Java supports multithreaded programming, which allows
you to write programs that do many things simultaneously.

Architecture-Neutral
A central issue for the Java designers was that of code longevity and portability. One of
the main problems facing programmers is that no guarantee exists that if you write a
program today, it will run tomorrow—even on the same machine. Operating system
upgrades, processor upgrades, and changes in core system resources can all combine to
make a program malfunction. The Java designers made several hard decisions in the Java
language and the Java Virtual Machine in an attempt to alter this situation. Their goal was
―write once; run anywhere, anytime, forever.‖ To a great extent, this goal was
accomplished.

Interpreted and High Performance
Java enables the creation of cross-platform programs by compiling into an intermediate
representation called Java byte code. This code can be interpreted on any system that
provides a Java Virtual Machine. Most previous attempts at cross platform solutions have
done so at the expense of performance. Java was engineered for interpretation, the Java
byte code was carefully designed so that it would be easy to translate directly into native
machine code for very high performance by using a just-in-time compiler. Java run-time
systems that provide this feature lose none of the benefits of the platform-independent
code. ―High-performance cross-platform‖ is no longer an oxymoron.

Distributed
Java is designed for the distributed environment of the Internet, because it handles
TCP/IP protocols. In fact, accessing a resource using a URL is not much different from
accessing a file. The original version of Java (Oak) included features for intraaddress-
space messaging. This allowed objects on two different computers to execute procedures
remotely. Java revived these interfaces in a package called Remote Method Invocation
(RMI). This feature brings an unparalleled level of abstraction to client/server
programming.

Dynamic
Java programs carry with them substantial amounts of run-time type information that is
used to verify and resolve accesses to objects at run time. This makes it possible to
dynamically link code in a safe and expedient manner. This is crucial to the robustness of

Page 14

the applet environment, in which small fragments of byte code may be dynamically
updated on a running system.

Security
Every time that you download a ―normal‖ program, you are risking a viral infection.
Even so, most users still worried about the possibility of infecting their systems with a
virus. In addition to viruses, another type of malicious program exists that must be
guarded against. This type of program can gather private information, such as credit card
numbers, bank account balances, and passwords, by searching the contents of your
computer‘s local file system. Java answers both of these concerns by providing a
―firewall‖ between a networked application and your computer. When you use a Java-
compatible Web browser, you can safely download Java applets without fear of viral
infection or malicious intent. Java achieves this protection by confining a Java program to
the Java execution environment and not allowing it access to other parts of the computer.

Portability
Many types of computers and operating systems are in use throughout the world—and
many are connected to the Internet. For programs to be dynamically downloaded to all
the various types of platforms connected to the Internet, some means of generating
portable executable code is needed. As you will soon see, the same mechanism that helps
ensure security also helps create portability.

Data Types:
Java defines eight simple types of data: byte, short, int, long, char, float, double, and
Boolean. These can be put in four groups:

• Integers this group includes byte, short, int, and long, which are for whole valued signed
numbers.

• Floating-point numbers this group includes float and double, which represent numbers
with fractional precision.

• Characters this group includes char, which represents symbols in a character set, like
letters and numbers.

• Boolean this group includes Boolean, which is a special type for representing true/false
values.
Integers:
The width and ranges of these integer types vary widely, as shown in this table:

Name Width Range

long 64 –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

int 32 –2,147,483,648 to 2,147,483,647
short 16 –32,768 to 32,767
byte 8 –128 to 127

Page 15

Floating-point:
There are two kinds of floating-point types, float and double, which represent single- and
double-precision numbers, respectively. Their width and ranges are shown here:

Name Width in Bits Approximate Range

double 64 4.9e–324 to 1.8e+308
float 32 1.4e−045 to 3.4e+038

Variables:
The variable is the basic unit of storage in a Java program. A variable is defined by the
combination of an identifier, a type, and an optional initializer. In addition, all variables
have a scope, which defines their visibility, and a lifetime. In Java, all variables must be
declared before they can be used. The basic form of a variable declaration is shown here:

type identifier [= value][, identifier [= value] ...];

The type is one of Java‘s atomic types, or the name of a class or interface. The identifier
is the name of the variable. You can initialize the variable by specifying an equal sign
and a value. To declare more than one variable of the specified type, use a comma-
separated list.

Here are several examples of variable declarations of various types. Note that some
include an initialization.
int a, b, c; // declares three ints, a, b, and c.
int d = 3, e, f = 5; // declares three more ints
byte z = 22; // initializes z.
double pi = 3.14159; // declares an approximation of pi.
char x = 'x'; // the variable x has the value 'x'.

The Scope and Lifetime of Variables:
All of the variables used till now have been declared at the start of the main() method.
However, Java allows variables to be declared within any block. A block is begun with
an opening curly brace and ended by a closing curly brace. A block defines a scope.
Thus, each time you start a new block, you are creating Scope determines what objects
are visible to other parts of your program. It also determines the lifetime of those objects.
Most other computer languages define two general categories of scopes: global and local.
The scope defined by a method begins with its opening curly brace. However, if that
method has parameters, they too are included within the method‘s scope. variables
declared inside a scope are not visible (that is, accessible)to code that is defined outside
that scope. Thus, when you declare a variable within a scope, you are localizing that
variable and protecting it from unauthorized access and/or modification. Scopes can be
nested. For example, each time you create a block of code, you are creating a new, nested
scope. When this occurs, the outer scope encloses the inner scope. This means that

Page 16

objects declared in the outer scope will be visible to code within the inner scope.
However, the reverse is not true. Objects declared within the inner scope will not be
visible outside it.

To understand the effect of nested scopes, consider the following program:
/ demonstrate block
scope. class Scope
{

public static void main(String args[])
{

int x; // known to all code within main
x = 10;
if(x == 10)
{ // start new scope

int y = 20; // known only to this block
/ x and y both known here.
System.out.println("x and y: " + x + " " +
y); x = y * 2;

}
/ y = 100; // Error! y not known here
/ x is still known here.
System.out.println("x is " + x);

}}
As the comments indicate, the variable x is declared at the start of main()‘s scope and is
accessible to all subsequent code within main(). Within the if block, y is declared. Since
a block defines a scope, y is only visible to other code within its block. This is why
outside of its block, the line y = 100; is commented out. If you remove the leading
comment symbol, a compile-time error will occur, because y is not visible outside of its
block. Within the if block, x can be used because code within a block (that is, a nested
scope) has access to variables declared by an enclosing scope.
Here is another important point to remember: variables are created when their scope is
entered and destroyed when their scope is left. This means that a variable will not hold its
value once it has gone out of scope. Therefore, variables declared within a method will
not hold their values between calls to that method. Also, a variable declared within a
block will lose its value when the block is left. Thus, the lifetime of a variable is confined
to its scope. If a variable declaration includes an initializer, then that variable will be
reinitialized each time the block in which it is declared is entered. For example, consider
the next program.

/ Demonstrate lifetime of a
variable. class Lifetime
{

public static void main(String args[])
{
int x;

Page 17

for(x = 0; x < 3; x++)
{

int y = -1; // y is initialized each time block is entered
System.out.println("y is: " + y); // this always prints -1
y = 100;
System.out.println("y is now: " + y);

}
}

}

The output generated by this program is shown here:
y is: -1
y is now: 100
y is: -1
y is now: 100
y is: -1
y is now: 100
As you can see, y is always reinitialized to –1 each time the inner for loop is entered.
Even though it is subsequently assigned the value 100, this value is lost.One last point:
Although blocks can be nested, you cannot declare a variable to have the same name as
one in an outer scope.

Arrays:
An array is a group of similar-typed variables that are referred to by a common name.
Arrays of any type can be created and may have one or more dimensions. A specific
element in an array is accessed by its index. Arrays offer a convenient means of grouping
related information.

One-Dimensional Arrays
A one-dimensional array is a list of like-typed variables. To create an array, you first
must create an array variable of the desired type. The general form of a one
dimensional array declaration is
type var-name[];
Here, type declares the base type of the array. For example, the following declares an
array named month with the type ―array of int‖:

int month [];

Although this declaration establishes the fact that month is an array variable, no array
actually exists. In fact, the value of month is set to null, which represents an array with
no value. To link month with an actual, physical array of integers, you must allocate one
using new and assign it to month. new is a special operator that allocates memory. The
general form of new as it applies to one-dimensional arrays appears as follows:

Page 18

array-var = new type[size];
Here, type specifies the type of data being allocated, size specifies the number of
elements in the array, and array-var is the array variable that is linked to the array. That
is, to use new to
allocate an array, you must specify the type and number of elements to allocate. The
elements in the array allocated by new will automatically be initialized to zero.

This example allocates a 12-element array of integers and links them to month
month = new int[12];
After this statement executes, month will refer to an array of 12 integers. Further, all
elements in the array will be initialized to zero.

Another way to declare an arrayin single step is
type arr-name=new type[size];

Arrays can be initialized when they are declared. The process is much the same as that
used to initialize the simple types. An array initializer is a list of comma-separated
expressions surrounded by curly braces. The commas separate the values of the array
elements. The array will automatically be created large enough to hold the number of
elements you specify in the array initializer. There is no need to use new.
For example, to store the number of days in each month, we do as
follows // An improved version of the previous program.

class AutoArray
{

public static void main(String args[])
{
int month[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31,30, 31 };
System.out.println("April has " + month[3] + " days."); }

}
When you run this program, in the output it prints the number of days in April. As
mentioned, Java array indexes start with zero, so the number of days in April is month[3]
or 30.
Here is one more example that uses a one-dimensional array. It finds the average of a set
of numbers.
/ Average an array of values.
class Average
{

public static void main(String args[])
{
double nums[] = {10.1, 11.2, 12.3, 13.4,
14.5}; double result = 0;

Page 19

int i;
for(i=0; i<5; i++)
result = result + nums[i];
System.out.println("Average is " + result / 5);
}

}
Output: Average is:12.3

Multidimensional Arrays
In Java, multidimensional arrays are actually arrays of arrays. To declare a
multidimensional array variable, specify each additional index using another set of square
brackets. For example, the following declares a two-dimensional array variable called
twoD.
int twoD[][] = new int[4][5];
This allocates a 4 by 5 array and assigns it to twoD.
program :
/ Demonstrate a two-dimensional
array. class TwoDArray
{

public static void main(String args[])
{

int twoD[][]= new int[4]
[5]; int i, j, k = 0;
for(i=0; i<4; i++)
for(j=0; j<5; j++)

{
twoD[i][j] =
k; k++;

}
for(i=0; i<4; i++)
{
for(j=0; j<5; j++)
System.out.print(twoD[i][j] + "
"); System.out.println();
}

}
}
Output:
0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19
When you allocate memory for a multidimensional array, you need only specify the
memory for the first (leftmost) dimension. You can allocate the remaining dimensions
separately. We can allocates the second dimension manually.

Page 20

int twoD[][] = new int[4][];
twoD[0] = new int[5];
twoD[1] = new int[5];
twoD[2] = new int[5];
twoD[3] = new int[5];
we can creates a two dimensional array in which the sizes of the second dimension are
unequal.
/ Manually allocate differing size second dimensions.
class TwoDAgain
{

public static void main(String args[])
{

int twoD[][] = new int[4][];
twoD[0] = new int[1];
twoD[1] = new int[2];
twoD[2] = new int[3];
twoD[3] = new int[4];
int i, j, k = 0;
for(i=0; i<4; i++)
for(j=0; j<i+1; j++)
{
twoD[i][j] =
k; k++;
}
for(i=0; i<4; i++)
{
for(j=0; j<i+1; j++)
System.out.print(twoD[i][j] + "
"); System.out.println();
}

}
}
Output:
0
1 2
3 4 5
6 7 8

We can create a three-dimensional array where first index specifies the number of tables,
second one number o0f rows and the third number of columns.
/ Demonstrate a three-dimensional
array. class threeDMatrix
{

public static void main(String args[])
{

Page 21

int threeD[][][] = new int[3][4][5];
int i, j, k;
for(i=0; i<3; i++)
for(j=0; j<4; j++)
for(k=0; k<5; k++)
threeD[i][j][k] = i * j * k;

for(i=0; i<3; i++)
{

for(j=0; j<4; j++)
{

for(k=0; k<5; k++)
System.out.print(threeD[i][j][k] + " ");

System.out.println();
}
System.out.println();
}

}
}
Output:
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 1 2 3 4
0 2 4 6 8
0 3 6 9 12

0 0 0 0 0
0 2 4 6 8
0 4 8 12 16
0 6 12 18 24

Alternative Array Declaration Syntax
There is a second form that may be used to declare an array:
type[] var-name;
Here, the square brackets follow the type specifier, and not the name of the array
variable. For example, the following two declarations are equivalent: int al[] = new
int[3];
int[] a2 = new int[3];

The following declarations are also equivalent:

Page 22

char twod1[][] = new char[3][4];
char[][] twod2 = new char[3][4];

Operators:

Operators are special symbols that perform specific operations on one, two, or three
operands, and then return a result. The operators in the following table are listed
according to precedence order. The closer to the top of the table an operator appears, the
higher its precedence. Operators with higher precedence are evaluated before operators
with relatively lower precedence. Operators on the same line have equal precedence.
When operators of equal precedence appear in the same expression, a rule must govern
which is evaluated first. All binary operators except for the assignment operators are
evaluated from left to right; assignment operators are evaluated right to left.

Operator Precedence

Operators Precedence

Postfix expr++, expr--

Unary ++expr --expr +expr –expr ~ !

multiplicative * / %

additive + -

shift << >> >>>

relational < > <= >= instanceof

equality == !=

bitwise AND &

bitwise
^

exclusive OR

bitwise
|

inclusive OR

logical AND &&

logical OR ||

ternary ? :

assignment = += -= *= /= %= &= ^= |= <<= >>= >>>=

Page 23

In general-purpose programming, certain operators tend to appear more frequently than
theirs; for example, the assignment operator "=" is far more common than the unsigned
right shift operator ">>>".

Expressions:
An expression is a construct made up of variables, operators, and method invocations,
which are constructed according to the syntax of the language that evaluates to a single
value.

int a = 0;
arr[0] = 100;
System.out.println("Element 1 at index 0: " + arr[0]);

int result = 1 + 2; // result is now 3
if(value1 == value2)
System.out.println("value1 == value2");

The data type of the value returned by an expression depends on the elements used in the
expression. The expression a= 0 returns an int because the assignment operator returns a
value of the same data type as its left-hand operand; in this case, cadence is an int. As you
can see from the other expressions, an expression can return other types of values as well,
such as boolean or String.

For example, the following expression gives different results, depending on whether you
perform the addition or the division operation first:

x + y / 100 // ambiguous
You can specify exactly how an expression will be evaluated using balanced parenthesis
rewrite the expression as

(x + y) / 100 // unambiguous, recommended
If you don't explicitly indicate the order for the operations to be performed, the order is
determined by the precedence assigned to the operators in use within the expression.
Operators that have a higher precedence get evaluated first. For example, the division
operator has a higher precedence than does the addition operator. Therefore, the
following two statements are equivalent:

x + y / 100

x + (y / 100) // unambiguous, recommended
When writing compound expressions, be explicit and indicate with parentheses which
operators should be evaluated first.

Control Statements:

IF Statement

The general form of the if statement:

if (condition) statement1;

Page 24

Here, each statement may be a single statement or a compound statement enclosed in
curly braces (that is, a block). The condition is any expression that returns a boolean
value.
If the condition is true, then statement1 is executed. Otherwise,statement2 is executed.

IF –ELSE Statement
The general form of the if statement:

if (condition) statement1;
else statement2;

The if-then-else statement provides a secondary path of execution when an "if" clause
evaluates to false.

void applyBrakes()

{

if (isMoving)
{

currentSpeed--;
}
else
{

System.err.println("The bicycle has already stopped!");
}

}

The switch Statement

Unlike if-then and if-then-else, the switch statement allows for any number of possible
execution paths. A switch works with the byte, short, char, and int primitive data types. It
also works with enumerated types .

Program: displays the name of the month, based on the value of month, using the switch
statement.

class SwitchDemo
{

public static void main(String[] args) {

int month = 8;
switch (month) {

case 1: System.out.println("January");
break;

Page 25

case 2: System.out.println("February");
break;

case 3: System.out.println("March");
break;

case 4: System.out.println("April");
break;

case 5: System.out.println("May");
break;

case 6: System.out.println("June");
break;

case 7: System.out.println("July");
break;

case 8: System.out.println("August");
break;

case 9: System.out.println("September");
break;

case 10: System.out.println("October");
break;

case 11: System.out.println("November");
break;

case 12: System.out.println("December");
break;

default: System.out.println("Invalid month.");
break;

}
}

}
Output:"August"

The body of a switch statement is known as a switch block. Any statement immediately
contained by the switch block may be labeled with one or more case or default labels.
The switch statement evaluates its expression and executes the appropriate case.

The while and do-while Statements

The while statement continually executes a block of statements while a particular
condition is true.

Its syntax can be expressed as:

while (expression)
{

statement(s)
}
The while statement evaluates expression, which must return a boolean value. If the
expression evaluates to true, the while statement executes the statement(s) in the while
block. The while statement continues testing the expression and executing its block until

Page 26

the expression evaluates to false. Using the while statement to print the values from 1
through 10 can be accomplished as in the following program:

class WhileDemo
{

public static void main(String[] args)
{

int count = 1;
while (count < 11)

{
System.out.println("Count is: " + count);
count++;

}
}

}
do-while statement

Its syntax can be expressed as:

do
{

statement(s)
} while (expression);

The difference between do-while and while is that do-while evaluates its expression at
the bottom of the loop instead of the top. Therefore, the statements within the do block
are always executed at least once.

Program:

class DoWhileDemo
{

public static void main(String[] args){
int count = 1;
do {

System.out.println("Count is: " + count);
count++;

} while (count <= 11);
}

}

The for Statement

The for statement provides a compact way to iterate over a range of values. Programmers
often refer to it as the "for loop" because of the way in which it repeatedly loops until a

Page 27

particular condition is satisfied. The general form of the for statement can be expressed as
follows:

for (initialization; termination; increment) {
statement(s)

}
When using the for statement, we need to remember that

• The initialization expression initializes the loop; it's executed once, as the loop begins.

• When the termination expression evaluates to false, the loop terminates.

• The increment expression is invoked after each iteration through the loop; it is perfectly
acceptable for this expression to increment or decrement a value.

Type Conversion and Casting:
We can assign a value of one type to a variable of another type. If the two types are
compatible, then Java will perform the conversion automatically. For example, it is
always possible to assign an int value to a long variable. However, not all types are
compatible, and thus, not all type conversions are implicitly allowed. For instance, there
is no conversion defined from double to byte.
But it is possible for conversion between incompatible types. To do so, you must use a
cast, which performs an explicit conversion between incompatible types.

Java‘s Automatic Conversions

When one type of data is assigned to another type of variable, an automatic type
conversion will take place if the following two conditions are satisfied:

• The two types are compatible.
• The destination type is larger than the source type.

When these two conditions are met, a widening conversion takes place. For example, the
int type is always large enough to hold all valid byte values, so no explicit cast statement
is required.
For widening conversions, the numeric types, including integer and floating-point types,
are compatible with each other. However, the numeric types are not compatible with char
or boolean. Also, char and boolean are not compatible with each other.
Java also performs an automatic type conversion when storing a literal integer constant
into variables of type byte, short, or long.

Casting Incompatible Types

The automatic type conversions are helpful, they will not fulfil all needs. For example, if
we want to assign an int value to a byte variable. This conversion will not be performed
automatically, because a byte is smaller than an int. This kind of conversion is sometimes
called a narrowing conversion, since you are explicitly making the value narrower so that

Page 28

it will fit into the target type. To create a conversion between two incompatible types,
you must use a cast. A cast is simply an explicit type conversion. It has this general form:

(target-type) value
Here, target-type specifies the desired type to convert the specified value to.
Example:
int a;
byte b;
// ...
b = (byte) a;
A different type of conversion will occur when a floating-point value is assigned to an
integer type: truncation. As integers do not have fractional components so,when a
floating-point value is assigned to an integer type, the fractional component is lost.

Program:
class Conversion
{

public static void main(String args[])
{
byte b;
int i = 257;
double d = 323.142;
System.out.println("\nConversion of int to byte.");
b = (byte) i;
System.out.println("i and b " + i + " " + b);
System.out.println("\nConversion of double to
int."); i = (int) d;
System.out.println("d and i " + d + " " + i);
System.out.println("\nConversion of double to
byte."); b = (byte) d;
System.out.println("d and b " + d + " " + b);
}

}

Output:
Conversion of int to byte.
i and b 257 1
Conversion of double to int.
d and i 323.142 323
Conversion of double to byte.
d and b 323.142 67
byte b = 50;
b = (byte)(b * 2);

Page 29

The Type Promotion Rules:
In addition to the elevation of bytes and shorts to int, Java defines several type promotion
rules that apply to expressions. They are as follows. First, all byte and short values are
promoted to int. Then, if one operand is a long, the whole expression is promoted to long.
If one operand is a float, the entire expression is promoted to float.If any of the operands
is double, the result is double.
The following program demonstrates how each value in the expression
gets promoted to match the second argument to each binary operator:

class Promote
{

public static void main(String args[])
{
byte b = 42;
char c = 'a';
short s = 1024;
int i = 50000;
float f = 5.67f;
double d = .1234;
double result = (f * b) + (i / c) - (d * s);
System.out.println((f * b) + " + " + (i / c) + " - " + (d * s));
System.out.println("result = " + result); }

}
double result = (f * b) + (i / c) - (d * s);
In the first sub expression, f * b, b is promoted to a float and the result of the sub
expression is float. Next, in the sub expression i / c, c is promoted to int, and the result is
of type int. Then, in d * s, the value of s is promoted to double, and the type of the sub
expression is double. Finally, these three intermediate values, float, int, and double, are
considered. The outcome of float plus an int is a float. Then the resultant float minus the
last double is promoted to double, which is the type for the final result of the expression.

Simple Java Program:
class Example
{
public static void main(String args[])
{
System.out.println("This is a simple Java program.");
}

}
Here public is an access modifier, which means this method can be accessed by any one
out side the class.
Static allows the main () method to be called without initiating any instance for the class.
Void tells the compiler that main() doesnot return any type.

Page 30

String args[] declares a parameter named args,which is an array of instances of class
string.
args takes the arguments for a command line.

Classes and Objects:

In the real world, you'll often find many individual objects all of the same kind. There
may be thousands of other bicycles in existence, all of the same make and model. Each
bicycle was built from the same set of blueprints and therefore contains the same
components. In object-oriented terms, we say that your bicycle is an instance of the class
of objects known as bicycles. A class is the blueprint from which individual objects are
created.

Declaring Member Variables

There are several kinds of variables:

• Member variables in a class—these are called fields.

• Variables in a method or block of code—these are called local variables.

• Variables in method declarations—these are called parameters.

A class is declared by use of the class
keyword class classname
{

type instance-variable1;
type instance-variable2;
// ...
type instance-variableN;
type methodname1(parameter-list)
{
/ body of method
}
type methodname2(parameter-list)
{
/ body of method
}
// ...
type methodnameN(parameter-list)
{
/ body of method
}
}
The data, or variables, defined within a class are called instance variables. The code is
contained within methods. Collectively, the methods and variables defined within a class
are called members of the class. In most classes, the instance variables are acted upon and
accessed by the methods defined for that class. Variables defined within a class are called

Page 31

instance variables because each instance of the class (that is, each object of the class)
contains its own copy of these variables.Thus, the data for one object is separate and
unique from the data for another.

Example:
Class demo
{

int x=1;;
int y=2;
float z=3;
void display()
{
System.out.println(―values of x, y and z are:‖+x+‖ ―+y‖+‖ ―+z);

}
}

Declaring Objects
when you create a class, you are creating a new data type. You can use this type to
declare objects of that type. However, obtaining objects of a class is a two-step process.
First, you must declare a variable of the class type. This variable does not define an
object. Instead, it is simply a variable that can refer to an object. Second, you must
acquire an actual, physical copy of the object and assign it to that variable. You can do
this using the new operator. The new operator dynamically allocates (that
is, allocates at run time) memory for an object and returns a reference to it. This reference
is, more or less, the address in memory of the object allocated by new.
This reference is then stored in the variable. Thus, in Java, all class objects must be
dynamically allocated.
In the above programs to declare an object of type demo:
Demo d1 = new demo();
This statement combines the two steps just described. It can be rewritten like this
to show each step more clearly:
demo d1; // declare reference to object
d1 = new demo(); // allocate a demo object
The first line declares d1 as a reference to an object of type demo. After this line
executes, d1 contains the value null, which indicates that it does not yet point to an actual
object. Any attempt to use d1 at this point will result in a compile-time error. The next
line allocates an actual object and assigns a reference to it to d1.After the second line
executes; you can use d1 as if it were a demo object. But in reality, d1 simply holds the
memory address of the actual demo object. The effect of these two lines of code is
depicted in Figure.

Constructors:

Page 32

A class contains constructors that are invoked to create objects from the class blueprint.
Constructor declarations look like method declarations—except that they use the name
of the class and have no return type. A constructor initializes an object immediately upon
creation.

Constructors can be default or parameterized constructors.

A default constructor is called when an instance is created for a class.

Example

Class demo
{
int x;
int y;
float z;
demo()
{
X=1;

Y=2;
Z=3;
}
void display()
{
System.out.println(―values of x, y and z are:‖+x+‖ ―+y‖+‖ ―+z);
}
}
Class demomain
{
Public static void main(String args[])
{
demo d1=new demo(); // this is a call for the above default constructor
d1.display();
}
}

Parameterized constructor:

Class demo
{
int x;
int y;
float z;
demo(int x1,int y1,int z1)
{
x=x1;

Page 33

y=y1;
z=z1;

}
void display()
{
System.out.println(―values of x, y and z are:‖+x+‖ ―+y‖+‖ ―+z);
}
}
Class demomain
{
Public static void main(String args[])
{
demo d1=new demo(1,2,3); // this is a call for the above parameterized constructor
d1.display();
}
}

This Keyword:

Sometimes a method will need to refer to the object that invoked it. To allow this, Java
defines the this keyword. this can be used inside any method to refer to the current
object.That is, this is always a reference to the object on which the method was invoked.
You can use this anywhere a reference to an object of the current class‘ type is permitted.
Example:
Class demo
{
int x;
int y;
float z;
demo(int x,int y,int z)
{
this.x=x;
this.y=y;
this.z=z;

}
void display()
{
System.out.println(―values of x, y and z are:‖+x+‖ ―+y‖+‖ ―+z);
}
}
Class demomain
{
Public static void main(String args[])
{
demo d1=new demo(1,2,3); // this is a call for the above parameterized constructor

Page 34

d1.display();
}
}

Output:
Values of x, y and z are:1 2 3
To differentiate between the local and instance variables we have used this keyword int
the constructor.

Garbage Collection:
Since objects are dynamically allocated by using the new operator, objects are destroyed
and their memory released for later reallocation. In some languages, such as C++,
dynamically allocated objects must be manually released by use of a delete operator. Java
takes a different approach; it
handles deallocation for you automatically. The technique that accomplishes this is called
garbage collection. It works like this: when no references to an object exist, that object is
assumed to be no longer needed, and the memory occupied by the object can be
reclaimed. There is no explicit need to destroy objects as in C++. The finalize() Method

Sometimes an object will need to perform some action when it is destroyed. For example,
if an object is holding some non-Java resource such as a file handle or window character
font, then you might want to make sure these resources are freed before an object is
destroyed. To handle such situations, Java provides a mechanism called finalization. By
using finalization, you can define specific actions that will occur when an object is just
about to be reclaimed by the garbage collector.
To add a finalizer to a class, you simply define the finalize() method. The Java run time
calls that method whenever it is about to recycle an object of that class. Inside the
finalize() method you will specify those actions that must be performed before an object
is destroyed. The garbage collector runs periodically, checking for objects that are no
longer referenced by any running state or indirectly through other referenced objects.
Right before an asset is freed, the Java run time calls the finalize() method on the object.
The finalize() method has this general form:
protected void finalize()
{
/ finalization code here
}
Here, the keyword protected is a specifier that prevents access to finalize() by code
defined outside its class.

Overloading Methods:
The Java programming language supports overloading methods, and Java can distinguish
between methods with different method signatures. This means that methods within a
class can have the same name if they have different parameter lists .

Page 35

Suppose that you have a class that can use calligraphy to draw various types of data
(strings, integers, and so on) and that contains a method for drawing each data type. It is
cumbersome to use a new name for each method—for example, drawString, drawInteger,
drawFloat, and so on. In the Java programming language, you can use the same name for
all the drawing methods but pass a different argument list to each method. Thus, the data
drawing class might declare four methods named draw, each of which has a different
parameter list.

public class DataArtist {
...
public void draw(String s) {

...
}
public void draw(int i) {

...
}
public void draw(double f) {

...
}
public void draw(int i, double f) {

...
}

}
Overloaded methods are differentiated by the number and the type of the arguments
passed into the method. In the code sample, draw(String s) and draw(int i) are distinct
and unique methods because they require different argument types. You cannot declare
more than one method with the same name and the same number and type of arguments,
because the compiler cannot tell them apart.The compiler does not consider return type
when differentiating methods, so you cannot declare two methods with the same
signature even if they have a different return type.

Overloading Constructors:
We can overload constructor methods
class Box {
double width;
double height;
double depth;
/ This is the constructor for Box.
Box(double w, double h, double d)
{ width = w;
height = h;
depth = d;
}
/ compute and return volume
double volume() {
return width * height * depth;

Page 36

}
}
As you can see, the Box() constructor requires three parameters. This means that all
declarations of Box objects must pass three arguments to the Box() constructor. For
example, the following statement is currently invalid: Box ob = new Box();

Since Box() requires three arguments.
/* Here, Box defines three constructors to
initialize the dimensions of a box various ways. */

class Box {
double width;
double height;
double depth;
/ constructor used when all dimensions specified
Box(double w, double h, double d) {
width = w;
height = h;
depth = d;
}
/ constructor used when no dimensions specified
Box() {
width = -1; // use -1 to
indicate height = -1; // an
uninitialized depth = -1; // box
}
/ constructor used when cube is created
Box(double len) {
width = height = depth = len;
}
/ compute and return volume
double volume() {
return width * height * depth;
}
}
class OverloadCons
{
public static void main(String args[]) {
/ create boxes using the various constructors

Box mybox1 = new Box(10, 20, 15);
Box mybox2 = new Box();
Box mycube = new
Box(7); double vol;
/ get volume of first box
vol = mybox1.volume();

Page 37

System.out.println("Volume of mybox1 is " + vol);
/ get volume of second box vol =
mybox2.volume(); System.out.println("Volume of
mybox2 is " + vol); //get volume of cube

vol = mycube.volume();
System.out.println("Volume of mycube is " + vol);
}
}
Output:

Volume of mybox1 is 3000.0
Volume of mybox2 is -1.0
Volume of mycube is 343.0

Parameter Passing:
In general, there are two ways that a computer language can pass an argument to a
subroutine.
The first way is call-by-valueI.In this method copies the value of an argument into the
formal parameter of the subroutine. Therefore, changes made to the parameter of the
subroutine have no effect on the argument.
The second way an argument can be passed is call-by-reference. In this method, a
reference to an argument (not the value of the argument) is passed to the parameter.
Inside the subroutine, this reference is used to access the actual argument specified in the
call. This means that changes made to the parameter will affect the argument used to call
the subroutine.
Java uses both approaches, depending upon what is passed.
In Java, when you pass a simple type to a method, it is passed by value. Thus, what
occurs to the parameter that receives the argument has no effect outside the
method. For example, consider the following program:
/ Simple types are passed by value.
class Test {
void meth(int i, int j)
{ i *= 2;
j /= 2;
}
}
class CallByValue
{
public static void main(String args[])
{
Test ob = new Test();
int a = 15, b = 20;
System.out.println("a and b before call: " + a + " " +
b); ob.meth(a, b);
System.out.println("a and b after call: " +a + " " + b);

Page 38

}
}
output :
a and b before call: 15 20
a and b after call: 15 20
we can see, the operations that occur inside meth() have no effect on the values of a and
b used in the call; their values here did not change to 30 and 10.
When we pass an object to a method, the situation changes dramatically, because objects
are passed by reference. Keep in mind that when you create a variable of a class type, you
are only creating a reference to an object. Thus, when you pass this reference to a
method, the parameter that receives it will refer to the same object as that referred to by
the argument. This effectively means that objects are passed to methods by use of call-
by-reference. Changes to the object inside the method do affect the object used as an
argument.
Example:
/ Objects are passed by
reference. class Test {
int a, b;
Test(int i, int j) {
a = i;
b = j;
}
/ pass an object
void meth(Test o)
{
o.a *= 2;
o.b /= 2;
}
}
class CallByRef
{
public static void main(String args[])
{
Test ob = new Test(15, 20);
System.out.println("ob.a and ob.b before call: " +ob.a + " " +
ob.b); ob.meth(ob);
System.out.println("ob.a and ob.b after call: " +ob.a + " " + ob.b);
}
}
output:
ob.a and ob.b before call: 15 20
ob.a and ob.b after call: 30 10
in this case, the actions inside meth() have affected the object used as an argument.

Page 39

Recursion:

Java supports recursion. Recursion is the process of defining something in terms of itself.
As it relates to Java programming, recursion is the attribute that allows a method to call
itself. A method that calls itself is said to be recursive.
The classic example of recursion is the computation of the factorial of a number.
The factorial of a number N is the product of all the whole numbers between 1 and N.
For example, 3 factorial is 1 × 2 × 3, or 6. Here is how a factorial can be computed
by use of a recursive method:
/ A simple example of recursion.
class Factorial
{
/ this is a recursive function
int fact(int n)
{
int result;
if(n==1) return 1;
result = fact(n-1) * n;
return result;
}
}
class Recursion {
public static void main(String args[]) { Factorial f
= new Factorial(); System.out.println("Factorial
of 3 is " + f.fact(3));
System.out.println("Factorial of 4 is " +
f.fact(4)); System.out.println("Factorial of 5 is "
+ f.fact(5)); }}
Output:
Factorial of 3 is 6
Factorial of 4 is 24
Factorial of 5 is 120

String Handling:

In Java a string is a sequence of characters. But, unlike many other languages that
implement strings as character arrays, Java implements strings as objects of type String.
Implementing strings as built-in objects allows Java to provide a full complement of
features that make string handling convenient.

Page 40

when you create a String object, you are creating a string that cannot be changed. That is,
once a String object has been created, you cannot change the characters that comprise
that string. The
difference is that each time you need an altered version of an existing string, a new
String object is created that contains the modifications. The original string is left
unchanged. This approach is used because fixed, immutable strings can be implemented
more efficiently than changeable ones. For those cases in which a modifiable string is
desired, there is a companion class to String called StringBuffer, whose objects contain
strings that can be modified after they are created.
Both the String and StringBuffer classes are defined in java.lang. Thus, they are
available to all programs automatically. Both are declared final, which means that neither
of these classes may be subclassed.

The String Constructors:
The String class supports several constructors. To create an empty String, you call the
default constructor.
For example,
String s = new String();
will create an instance of String with no characters in it.Frequently, you will want to
create strings that have initial values. The String class provides a variety of constructors
to handle this. To create a String initialized by an array of characters, use the constructor
shown here:
String(char chars[])

Example:
char chars[] = { 'a', 'b', 'c' };
String s = new String(chars);
This constructor initializes s with the string ―abc‖.

You can specify a subrange of a character array as an initializer using the
following constructor:
String(char chars[], int startIndex, int numChars)
Here, startIndex specifies the index at which the subrange begins, and
numChars specifies the number of characters to use. Example:

char chars[] = { 'a', 'b', 'c', 'd', 'e', 'f' };
String s = new String(chars, 2, 3);
This initializes s with the characters cde.

You can construct a String object that contains the same character sequence
as another String object using this constructor: String(String strObj)

Here, strObj is a String object.

Page 41

String Length:
The length of a string is the number of characters that it contains. To obtain this value,
call the length() method.
int length()

Example:
char chars[] = { 'a', 'b', 'c' };
String s = new String(chars);
System.out.println(s.length());
It prints 3 as the output since the string as 3 characters.

charAt()
To extract a single character from a String, you can refer directly to an individual
character via the charAt() method. It has this general form: char charAt(int where)

getChars()
If you need to extract more than one character at a time, you can use the getChars()
method. It has this general form:
void getChars(int sourceStart, int sourceEnd, char target[], int targetStart)

equals()
To compare two strings for equality, use equals(). It has this general form:
boolean equals(Object str)
Here, str is the String object being compared with the invoking String object. It returns
true if the strings contain the same characters in the same order, and false otherwise. The
comparison is case-sensitive.
To perform a comparison that ignores case differences, call equalsIgnoreCase().When it
compares two strings, it considers A-Z to be the same as a-z. It has this general form:
boolean equalsIgnoreCase(String str)
Here, str is the String object being compared with the invoking String object.

compareTo()
to know whether two strings are identical. For sorting applications, you need to know
which is less than, equal to, or greater than the next. A string is less than another if it
comes before the other in dictionary order. A string is
greater than another if it comes after the other in dictionary order. The String method
compareTo() serves this purpose. It has this general form: int compareTo(String str)

Here, str is the String being compared with the invoking String.

indexOf()
The String class provides two methods that allow you to search a string for a specified
character or substring:

Page 42

• indexOf() Searches for the first occurrence of a character or substring.
• lastIndexOf() Searches for the last occurrence of a character or substring.

substring()
>>we can extract a substring using substring(). It has two forms. The first is
String substring(int startIndex)

>>Here, startIndex specifies the index at which the substring will begin. This form
returns a copy of the substring that begins at startIndex and runs to the end of the
invoking string.

>>The second form of substring() allows you to specify both the beginning and ending
index of the substring:

>>String substring(int startIndex, int endIndex)
Here, startIndex specifies the beginning index, and endIndex specifies the stopping point.
The string returned contains all the characters from the beginning index, up to,but not
including, the ending index.

replace()
The replace() method replaces all occurrences of one character in the invoking string
with another character. It has the following general form: String replace(char original,
char replacement)

StringBuffer Constructors:
StringBuffer defines these three constructors:
StringBuffer()
StringBuffer(int size)
StringBuffer(String str)

• The default constructor (the one with no parameters) reserves room for 16 characters
without reallocation.

• The second version accepts an integer argument that explicitly sets the size of the buffer.
The third version accepts a String argument that sets the initial contents of the
StringBuffer object and reserves room for 16 more characters without reallocation.

• StringBuffer allocates room for 16 additional characters when no specific buffer length
is requested, because reallocation is a costly process in terms of time.
Also, frequent reallocations can fragment memory. By allocating room for a few extra
characters, StringBuffer reduces the number of reallocations that take place.

length() and capacity()
The current length of a StringBuffer can be found via the length() method, while the
total allocated capacity can be found through the capacity() method. They have the
following general forms:
int length()

Page 43

int capacity()

ensureCapacity()
If you want to preallocate room for a certain number of characters after a StringBuffer
has been constructed, you can use ensureCapacity() to set the size of the buffer.
ensureCapacity() has this general form:
void ensureCapacity(int capacity)
Here, capacity specifies the size of the buffer

append()
The append() method concatenates the string representation of any other type of data to
the end of the invoking StringBuffer object. It has overloaded versions for all the built-in
types and for Object. Here are a few of its forms: StringBuffer append(String str)

StringBuffer append(int num)
StringBuffer append(Object obj)
String.valueOf() is called for each parameter to obtain its string representation.

insert()

The insert() method inserts one string into another.
StringBuffer insert(int index, String str)
StringBuffer insert(int index, char ch)
StringBuffer insert(int index, Object obj)

Here, index specifies the index at which point the string will be inserted into the
invoking StringBuffer object

reverse()
You can reverse the characters within a StringBuffer object using reverse(), shown
here:
StringBuffer reverse()
This method returns the reversed object on which it was called

delete() and deleteCharAt()
to delete characters using the methods delete() and deleteCharAt(). These methods are
shown here:
StringBuffer delete(int startIndex, int endIndex)
StringBuffer deleteCharAt(int loc)
The delete() method deletes a sequence of characters from the invoking object. Here,
startIndex specifies the index of the first character to remove, and endIndex specifies an

Page 44

index one past the last character to remove. Thus, the substring deleted runs from
startIndex to endIndex–1. The resulting StringBuffer object is returned.
The deleteCharAt() method deletes the character at the index specified by loc. It returns
the resulting StringBuffer object

replace()
to replaces one set of characters with another set inside a StringBuffer object. Its
signature is shown here:
StringBuffer replace(int startIndex, int endIndex, String str)
The substring being replaced is specified by the indexes startIndex and endIndex. Thus,
the substring at startIndex through endIndex–1 is replaced.

.

UNIT 3 Inheritance

Hierarchical Abstractions

Example:

• Abstraction consists of eliminating unnecessary detail and concentrating on essential
features

• The concept of an evergreen tree is an abstraction
• Fir trees, Thuya trees, Pine trees, ... have features that are common to all evergreen trees

Page 45

• The concept of a deciduous tree is an abstraction
• Maple trees, Oak trees, Apple trees, ... have features that are common to all deciduous

trees

INHERITANCE:

Inheritance is a Java language feature, used to model hierarchical abstraction
Inheritance means taking a class (called the base class) and defining a new class (called
the subclass) by specializing the state and behaviors of the base class
Subclasses specialize the behaviors of their base class

• The subclasses inherit the state and behaviors of their base class
• They can have additional state and behaviors

Inheritance is mainly used for code reusability and to reduce the complexity of the
program.

Base Class:

A class that is being inherited is known as Base class
For ex:
Class x
{
Void method ();
}
class y extends x
{
}
In the above example the class x is known as the base class.
When we create an object for the base class then that object is known as base class object.
Sub class:
The class that is inheriting the base class Is known as sub class.
In the example above since class y is inheriting the class x, class y is known as the
subclass to class x.

Definition of substitutability:
• Assigning derived class object to parent class reference variables is known as

substitutability.
• The concept of substitutability is fundamental to many of the powerful software

development techniques in object oriented programming.
• The idea is that the type given in a declaration of variable doesn‘t have to match the type

associated with value the variable is holding.
• It can also be used through interfaces.

Page 46

FORMS OF INHERITANCE:
The choices between inheritance and overriding, subclass and subtypes, mean

that inheritance can be used in a variety of different ways and for different purposes.
Many of these types of inheritance are given their own special names. We will
describe some of these specialized forms of inheritance.

• Specialization

• Specification

• Construction

• Generalization or Extension

• Limitation

• Variance

Specialization Inheritance: By far the most common form of inheritance is for
specialization . A good example is the Java hierarchy of Graphical components in the
AWT:

• Component
• Label
• Button
• TextComponent
• TextArea
• TextField
• CheckBox
• Scroll bar

Each child class overrides a method inherited from the parent in order to specialize the
class in some way.
Specification Inheritance:

• If the parent class is abstract, we often say that it is providing a specification for the child
class, and therefore it is specification inheritance (a variety of specialization inheritance).

Example: Java Event Listeners, ActionListener, MouseListener, and so on
specify behavior, but must be subclassed.

Inheritance for Construction:

• If the parent class is used as a source for behavior, but the child class has no is-a
relationship to the parent, then we say the child class is using inheritance for construction.

An example might be subclassing the idea of a Set from an existing List class.

Page 47

• Generally not a good idea, since it can break the principle of substituability, but
nevertheless sometimes found in practice. (More often in dynamically typed languages,
such as Smalltalk).

Inheritance for Generalization or Extension:

• If a child class generalizes or extends the parent class by providing more functionality,
and overrides any method, we call it inheritance for generalization.

• The child class doesn't change anything inherited from the parent, it simply adds new
features is called extension.

An example is Java Properties inheriting form Hashtable.

Inheritance for Limitation:

• If a child class overrides a method inherited from the parent in a way that makes it
unusable (for example, issues an error message), then we call it inheritance for limitation.

For example, you have an existing List data type that allows items to be inserted at
either end, and you override methods allowing insertion at one end in order to create a
Stack.

• Generally not a good idea, since it breaks the idea of substitution. But again, it is
sometimes found in practice.

Inheritance for Variance:

• Two or more classes that seem to be related, but its not clear who should be the parent
and who should be the child.

Example: Mouse and TouchPad and JoyStick
• Better solution, abstract out common parts to new parent class, and use subclassing for

specialization.

Summary of Forms of Inheritance:

Specialization: The child class is a special case of the parent class; in other words, the
child class is a subtype of the parent class.

Specification: The parent class defines behavior that is implemented in the child class
but not in the parent class.

Page 48

Construction: The child class makes use of the behavior provided by the parent class,
but is not a subtype of the parent class.

Generalization: The child class modifies or overrides some of the methods of the parent
class.

Extension: The child class adds new functionality to the parent class, but does not
change any inherited behavior.

Limitation: The child class restricts the use of some of the behavior inherited from the
parent class.

Variance: The child class and parent class are variants of each other, and the class-
subclass relationship is arbitrary.

Combination: The child class inherits features from more than one parent class. This is
multiple inheritance and will be the subject of a later chapter.

BENEFITS OF INHERITANCE:

• Software Reuse
• Code Sharing
• Improved Reliability
• Consistency of Interface
• Rapid Prototyping
• Polymorphism
• Information Hiding

COSTS OF INHERITANCE:

• Execution speed
• Program size
• Message Passing Overhead
• Program Complexity

This does not mean you should not use inheritance, but rather than you must understand
the benefits, and weigh the benefits against the costs.

TYPES OF INHERITANCE:

• Single Level Inheritance:
When one base class is being inherited by one sub class then that kind of

inheritance is known as single level inheritance.
• Multi Level Inheritance:

Page 49

When a sub class is in turn being inherited then that kind of inheritance is known as
multi level inheritance.

• Hierarchical Inheritance:
When a base class is being inherited by one or more sub class then that kind of

inheritance is known as hierarchical inheritance.

A sub class uses the keyword ―extends‖ to inherit a base class.

Example for Single Inheritance:
class x
{

int a;
void display()
{

a=0;
System.out.println(a);

}
}
class y extends x
{

int b;
void show()

{
B=1;
System.out.println(b);

}
}
class show_main
{

Public static void main(String args[])
{

y y1=new y();
y1.display();
y1.show();

}
}
Output:
0
1
Since the class y is inheriting class x, it is able to access the members of class x.
Hence the method display() can be invoked by the instance of the class y.

Example for multilevel inheritance:
class x
{

Page 50

int a;
void display()
{

a=0;
System.out.println(a);

}
}
class y extends x
{

int b;
void show()
{

B=1;
System.out.println(b);

}
}
class z extends y
{

int c;
show1()
{

c=2;
System.out.println(c);

}
}
class show_main
{

Public static void main(String args[])
{

z z1=new z();
z1.display();

z1.show();
}

}

Output
0
1
2
Since class z is inheriting class y which is in turn a sub class of the class x, indirectly z
can access the members of class x.
Hence the instance of class z can access the display () method in class x, the show ()
method in class y.
Problems:

Page 51

In java multiple level inheritance is not possible easily. We have to make use of a concept
called interfaces to achieve it.

Access Specifers:
The different access specifiers used are

• Public
• Private
• Protected
• Default
• Privateprotected

1. Private members can be accessed only within the class in which they are declared.
2. Protected members can be accessed inside the class in which they are declared and also
in the sub classes in the same package and sub classes in the other packages.
3. Default members are accessed by the methods in their own class and in the sub classes
of the same package.
4. Public members can be accessed anywhere.

Super Keyword:
Whenever a sub class needs to refer to its immediate super class, we can use the super
keyword.
Super has two general forms

• The first calls the super class constructor.
• The second is used to access a member of the super class that has been hidden by a

member of a sub class
Syntax:
A sub class can call a constructor defined by its super class by use of the following form
of super.
super(arg-list);
here arg-list specifies any arguments needed by the constructor in the super class .
The second form of super acts like a ―this‖ keyword. The difference between ―this‖ and
―super‖ is that ―this‖ is used to refer the current object where as the super is used to
refer to the super class.
The usage has the following general
form: super.member;

Example:
Class x
{

int
a; x()
{

a=0;
}
void display()

Page 52

{
System.out.println(a);

}
}
class y extends x
{

int b;

y()
{

super();
b=1;

}
Void display()
{

Super.display();
System.out.println(b);

}
}
class super_main
{

Public static void main(String args[])
{

y y1=new y();
y.display();

}
}

Using final with inheritance:
The keyword final has three uses.

• First it can be used to create the equivalent of a named constant.
• To prevent overriding.
• To prevent inheritance.

Using final to prevent overriding:
To disallow a method from being overridden, specify final as a modifier at the start of the
declaration.
Methods declared as final cannot be overridden.
Syntax:
final <return type> <method name> (argument list);

Using final with inheritance:
Some times we may want to prevent a class from being inherited.
In order to do this we must precede the class declaration with final.
Declaring a class as final implicitly declares all its methods as final.

Page 53

Example:
final class A
{
………//members
}

Abstract Classes:
Abstract methods:

We can require that some methods be overridden by sub classes by specifying
the abstract type modifier.
These methods are sometimes referred to as sub classer responsibility as they have no
implementation specified in the super class.
Thus a sub class must override them.
To declare an abstract method we have:
abstract type name (parameter list);
Any class that contains one or more abstract methods must also be declared abstract..
Such types of classes are known as abstract classes.
Abstract classes can contain both abstract and non-abstract methods.
Let us consider the following example:
abstract class A
{

abstract void callme();
void call()
{

System.out.println(―HELLO‖);
}

}
class B extends A
{

Void callme()
{

System.out.println(―GOOD MORNING‖);
}

}
class abstractdemo
{

Public static void main(String args[]){
B b=new B();
b.callme();
b.call();

}
}

Output: Page 54

