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Cloud Resource Management and Scheduling 

Resource management is a core function of any man-made system. It affects the three 

basic criteria for the evaluation of a system: performance, functionality, and cost. An 

inefficient resource management has a direct negative effect on performance and cost and 

an indirect effect on the functionality of a system. Indeed, some functions provided by the 

system may become too expensive or may be avoided due to poor performance. 

 

A cloud is a complex system with a very large number of shared resources subject to 

unpredictable requests and affected by external events it cannot control. Cloud resource 

management requires com-plex policies and decisions for multi-objective optimization. 

Cloud resource management is extremely challenging because of the complexity of the 

system, which makes it impossible to have accurate global state information, and because 

of the unpredictable interactions with the environment. 

 

The strategies for resource management associated with the three cloud delivery models, 

IaaS, PaaS, and SaaS, differ from one another. In all cases the cloud service providers are 

faced with large, fluctuating loads that challenge the claim of cloud elasticity. In some 

cases, when a spike can be predicted, the resources can be provisioned in advance, e.g., for 

Web services subject to seasonal spikes. For an unplanned spike, the situation is slightly 

more complicated. Auto Scaling can be used for unplanned spike loads, provided that (a) 

there is a pool of resources that can be released or allocated on demand and (b) there is a 

monitoring system that allows a control loop to decide in real time to reallocate resources. 

Auto Scaling is supported by PaaS services such as Google App Engine.  

 

It has been argued for some time that in a cloud, where changes are frequent and 

unpredictable, centralized control is unlikely to provide continuous service and 

performance guarantees. Indeed, centralized control cannot provide adequate solutions to 

the host of cloud management policies that have to be enforced. Autonomic policies are of 

great interest due to the scale of the system, the large number of service requests, the large 

user population, and the unpredictability of the load. The ratio of the mean to the peak 

resource needs can be very large.

 
6.1 Policies and mechanisms for resource management 

A policy typically refers to the principal guiding decisions, whereas mechanisms 

represent the means to implement policies. Separation of policies from mechanisms 

is a guiding principle in computer science. Butler Lampson and Per Brinch Hansen 

offer solid arguments for this separation in the context of operating system design. 

 

Cloud resource management policies can be loosely grouped into five classes: 

 

• Admission control. 

• Capacity allocation. 

• Load balancing. 

• Energy optimization. 

• Quality-of-service (QoS) guarantees. 
 

The explicit goal of an admission control policy is to prevent the system from 

accepting workloads in violation of high-level system policies; for example, a 

system may not accept an additional workload that would prevent it from 

completing work already in progress or contracted. Limiting the workload requires 

some knowledge of the global state of the system. In a dynamic system such 

knowledge, when available, is at best obsolete. Capacity allocation means to 

allocate resources for individual instances; an instance is an activation of a service. 
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Locating resources subject to multiple global optimization constraints requires a 

search of a very large search space when the state of individual systems changes 

rapidly. 

 

Load balancing and energy optimization can be done locally, but global load-

balancing and energy optimization policies encounter the same difficulties as the 

one we have already discussed. Load balancing and energy optimization are 

correlated and affect the cost of providing the services. Indeed, it was predicted that 

by 2012 up to 40% of the budget for IT enterprise infrastructure would be spent on 

energy. 

 

The common meaning of the term load balancing is that of evenly distributing the 

load to a set of servers. For example, consider the case of four identical servers, A, 
B, C , and D, whose relative loads are 80%, 60%, 40%, and 20%, respectively, of 

their capacity. As a result of perfect load balancing, all servers would end with the 

same load − 50% of each server’s capacity. In cloud computing a critical goal is 

minimizing the cost of providing the service and, in particular, minimizing the 

energy consumption. This leads to a different meaning of the term load balancing; 

instead of having the load evenly distributed among all servers, we want to 

concentrate it and use the smallest number of servers while switching the others to 

standby mode, a state in which a server uses less energy. In our example, the load 

from D will migrate to A and the load from C will migrate to B; thus, A and B will 

be loaded at full capacity, whereas C and D will be switched to standby mode. 

Quality of service is that aspect of resource management that is probably the most 

difficult to address and, at the same time, possibly the most critical to the future of 

cloud computing. 

 

As we shall see in this section, often resource management strategies jointly target 

performance and power consumption. Dynamic voltage and frequency scaling 

(DVFS) techniques such as Intel’s SpeedStep and AMD’s PowerNow lower the 

voltage and the frequency to decrease power consumption.
2
 Motivated initially by 

the need to save power for mobile devices, these techniques have migrated to 

virtually all processors, including the ones used for high-performance servers. 

 

DVFS is a power management technique to increase or decrease the operating 

voltage or frequency of a processor in order to increase the instruction execution 

rate and, respectively, reduce the amount of heat generated and to conserve power. 

 

 The power consumption P of a CMOS-based circuit is P = α · Ceff · V 
2
 · f , with 

α = the switching factor, Ceff = the effective capacitance, V = the operating voltage, 

and f = the operating frequency.
 

 

 

As a result of lower voltages and frequencies, the performance of processors 

decreases, but at a substantially slower rate than the energy consumption. Table 6.1 

shows the dependence of the normalized performance and the normalized energy 

consumption of a typical modern processor on clock rate. As we can see, at 1.8 GHz 

we save 18% of the energy required for maximum performance, whereas the 

performance is only 5% lower than the peak performance, achieved at 2.2 GHz. 

This seems a reasonable energy-performance tradeoff! 

www.JntukMaterials.com



 

 
 

Virtually all optimal – or near-optimal – mechanisms to address the five classes of 

policies do not scale up and typically target a single aspect of resource management, 

e.g., admission control, but ignore energy conservation. Many require complex 

computations that cannot be done effectively in the time available to respond. The 

performance models are very complex, analytical solutions are intractable, and the 

monitoring systems used to gather state information for these models can be too 

intrusive and unable to provide accurate data. Many techniques are concentrated on 

system performance in terms of throughput and time in system, but they rarely include 

energy tradeoffs or QoS guarantees. Some techniques are based on unrealistic 

assumptions; for example, capacity allocation is viewed as an optimization problem, 

but under the assumption that servers are protected from overload. 

Allocation techniques in computer clouds must be based on a disciplined approach 

rather than ad hoc methods. The four basic mechanisms for the implementation of 

resource management policies are: 

 

 Control theory. Control theory uses the feedback to guarantee system stability and 

predict transient behavior, but can be used only to predict local rather than global 

behavior. Kalman filters have been used for unrealistically simplified models. 

  

 Machine learning. A major advantage of machine learning techniques is that they do 

not need a performance model of the system. This technique could be applied to 

coordination of several autonomic system managers. 

 

 Utility-based. Utility-based approaches require a performance model and a mechanism 

to correlate user-level performance with cost. 

 

  

 Market-oriented/economic mechanisms. Such mechanisms do not require a model of 

the system, e.g., combinatorial auctions for bundles of resources. 

  
 

A distinction should be made between interactive and non-interactive workloads. 

The management techniques for interactive workloads, e.g., Web services, involve 

flow control and dynamic application placement, whereas those for non-interactive 

workloads are focused on scheduling. A fair amount of work reported in the literature 

is devoted to resource management of interactive workloads, some to non-interactive, 

and only a few, e.g., to heterogeneous workloads, a combination of the two. 
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6.2 Applications of control theory to task scheduling on a cloud 
 

Control theory has been used to design adaptive resource management for many 

classes of applications, including power management , task scheduling , QoS 

adaptation in Web servers , and load balancing. The classical feedback control 

methods are used in all these cases to regulate the key operating parameters of the 

system based on measurement of the system output; the feedback control in these 

methods assumes a linear time-invariant system model and a closed-loop controller. 

This controller is based on an open-loop system transfer function that satisfies stability 

and sensitivity constraints. 

 

A technique to design self-managing systems based on concepts from control theory 

is discussed in. The technique allows multiple QoS objectives and operating 

constraints to be expressed as a cost function and can be applied to stand-alone or 

distributed Web servers, database servers, high-performance application servers, and 

even mobile/embedded systems. The following discussion considers a single processor 

serving a stream of input requests. We attempt to minimize a cost function that reflects 

the response time and the power consumption. Our goal is to illustrate the 

methodology for optimal resource management based on control theory concepts. The 

analysis is intricate and cannot be easily extended to a collection of servers. 
 

Control Theory Principles. We start our discussion with a brief overview of control 

theory principles one could use for optimal resource allocation. Optimal control 

generates a sequence of control inputs over a look-ahead horizon while estimating 

changes in operating conditions. A convex cost function has arguments x (k), the state 

at step k, and u(k), the control vector; this cost function is minimized, subject to the 

constraints imposed by the system dynamics. The discrete-time optimal control 

problem is to determine the sequence of control variables u(i ), u(i + 1), . . . , u(n − 1) 
to minimize the expression 

 
 

where (n, x (n)) is the cost function of the final step, n, and L
k
 (x (k), u(k)) is a time-

varying cost function at the intermediate step k over the horizon [i , n]. The 

minimization is subject to the constraints 

 
where x (k + 1), the system state at time k + 1, is a function of x (k), the state at time k, and of 

u(k), the input at time k; in general, the function f 
k
 is time-varying; thus, its superscript. 

 

 
 

FIGURE 6.1: The structure of an optimal controller described in. The controller uses the 
feedback regarding the current state as well as the estimation of the future disturbance due to 
environment to compute the optimal inputs over a finite horizon. The two parameters r and s 

are the weighting factors of the performance index. 
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One of the techniques to solve this problem is based on the Lagrange multiplier 

method of finding the extremes (minima or maxima) of a function subject to 

constrains. More precisely, if we want to maximize the function g(x , y) subject to the 

constraint h(x , y) = k, we introduce a Lagrange multiplier λ. Then we study the 

function 

 

(x , y, λ) = g(x , y) + λ × [h(x , y) − k]. 
 

A necessary condition for the optimality is that (x , y, λ) is a stationary point for (x , 
y, λ). In other words, 

 
The Lagrange multiplier at time step k is λk and we solve Eq. (6.4) as an 

unconstrained optimization problem. We define an adjoint cost function that includes 

the original state constraints as the Hamiltonian function H , then we construct the 

adjoint system consisting of the original state equation and the costate equation 

governing the Lagrange multiplier. Thus, we define a two-point boundary problem
3
; 

the state xk develops forward in time whereas the costate occurs backward in time. 
 

A Model Capturing Both QoS and Energy Consumption for a Single-Server System. 
Now we turn our attention to the case of a single processor serving a stream of input requests. 

To compute the optimal inputs over a finite horizon, the controller in Figure 6.1 uses feedback 

regarding the current state, as well as an estimation of the future disturbance due to the 

environment. The control task is solved as a state regulation problem updating the initial and 

final states of the control horizon. 

 

We use a simple queuing model to estimate the response time. Requests for service at 

processor P are processed on a first-come, first-served (FCFS) basis. We do not 

assume a priori distributions of the arrival process and of the service process; instead, 

we use the estimate (ˆk)of the arrival rate(k)at time k. 

 
3
A boundary value problem has conditions specified at the extremes of the 

independent variable, whereas an initial value problem has all the conditions specified 

at the same value of the independent variable in the equation. 

 

We also assume that the processor can operate at frequencies u(k) in the range u(k) ∈ 

[umi n , umax ] and call cˆ(k) the time to process a request at time k when the processor 

operates at the highest frequency in the range, umax . Then we define the scaling factor 

α(k) = u(k)/umax and we express an estimate of the processing rate N (k) as α(k)/cˆ(k). 
 

The behavior of a single processor is modeled as a nonlinear, time-varying, discrete-

time state equation. If Ts is the sampling period, defined as the time difference 

between two consecutive observations of the system, e.g., the one at time (k + 1) and 

the one at time k, then the size of the queue at time (k + 1) is 

 

 
 

The first term, q(k), is the size of the input queue at time k, and the second one is the 

difference between the number of requests arriving during the sampling period, Ts , 

and those processed during the same interval. 
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The response time ω (k) is the sum of the waiting time and the processing time of the 

requests 

 

ω (k) = (1 + q(k)) × cˆ(k).  

 

Indeed, the total number of requests in the system is (1 + q(k)) and the departure rate is 

1/cˆ(k). 
 

We want to capture both the QoS and the energy consumption, since both affect the 

cost of providing the service. A utility function, such as the one depicted in Figure 6.4, 

captures the rewards as well as the penalties specified by the service-level agreement 

for the response time. In our queuing model the utility is a function of the size of the 

queue; it can be expressed as a quadratic function of the response time 

S(q(k)) = 1/2(s × (ω (k) − ω0)
2), 

with ω0, the response time set point and q(0) = q0, the initial value of the queue length. 

The energy consumption is a quadratic function of the frequency 

 

R(u(k)) = 1/2(r × u(k)2). 
 

The two parameters s and r are weights for the two components of the cost, the one 

derived from the utility function and the second from the energy consumption. We 

have to pay a penalty for the requests left in the queue at the end of the control 

horizon, a quadratic function of the queue length 

 

(q(N )) = 1/2(v × q(n)2). 
 

The performance measure of interest is a cost expressed as 

 
 

 

 

The problem is to find the optimal control u∗ and the finite time horizon [0, N ] such 

that the trajectory of the system subject to optimal control is q∗, and the cost J in  the 

above Equation  is minimized subject to the 

 

following 

constraints

ˆ 
−
 c(k) 

   

× Ts   , q(k)0, and umi n     u(k)    umax .   (6.11)  + = +  u  

q(k 

 

1)

 

q(k) 

 

(k) 

 u(k)   

    

ˆ ×

 

max          

 

When the state trajectory q(·) corresponding to the control u(·) satisfies the constraints 

 

1 : q(k) > 0, 2 : u(k) umi n , 3 : u(k) umax ,
 (6.12) 
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then the pair q(·), u(·) is called a feasible state. If the pair minimizes Eq. (6.10), then 

the pair is 

optimal. 

 

The Hamiltonian H in our example is 

H = S(q(k)) + R(u(k)) + λ(k + 1) ×  q(k) +(k) − c u(u Ts

  k)  

  
×  

max (6.13)

 µ1(k) × (−q(k)) + µ2(k) × (−u(k) + umi n ) + µ3(k) × (u(k) − umax ). 
 

According to Pontryagin’s minimum 

principle,
4
 pairs to be optimal pairs is the 

existence of a µ = [µ1(k), µ2(k), µ3(k)] such 

that 

 

the necessary condition for a sequence of 

feasible sequence of costates λ and a 

Lagrange multiplier 

 

H (k, q∗, u∗, λ∗, µ∗)H (k, q, u∗, λ∗, µ∗),   ∀q0 (6.14)

where the Lagrange multipliers, µ1(k), µ2(k), µ3(k), reflect the sensitivity of the cost 

function to the queue length at time k and the boundary constraints and satisfy several 

conditions 

 

µ
1 (k)0, µ1 (k)(−q(k)) = 0, (6.15)

µ2 (k)0, µ2(k)(−u(k) + umi n ) = 0, (6.16)

µ3 (k)0, µ3 (k)(u(k) − umax ) = 0. (6.17)

 

A detailed analysis of the methods to solve this problem and the analysis of the 

stability conditions is beyond the scope of our discussion and can be found in [369]. 

 

The extension of the techniques for optimal resource management from a single 

system to a cloud with a very large number of servers is a rather challenging area of 

research. The problem is even harder when, instead of transaction-based processing, 

the cloud applications require the implementation of a complex workflow. 
 

 

6.3 Stability of a two-level resource allocation architecture 
  We can assimilate a server with a closed-loop control system and we can apply 

control theory principles to resource allocation. In this section we discuss a two-level resource 

allocation architecture based on control theory concepts for the entire cloud. The automatic 

resource management is based on two levels of controllers, one for the service provider and 

one for the application, see Figure 6.2. 

 

FIGURE 6.2:  A two-level control architecture. Application controllers and cloud controllers work 
in concert. 
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The main components of a control system are the inputs, the control system 

components, and the outputs. The inputs in such models are the offered workload and 

the policies for admission control, the capacity allocation, the load balancing, the 

energy optimization, and the QoS guarantees in the cloud. The system components are 

sensors used to estimate relevant measures of performance and controllers that 

implement various policies; the output is the resource allocations to the individual 

applications. 

 

The controllers use the feedback provided by sensors to stabilize the system; 

stability is related to the change of the output. If the change is too large, the system 

may become unstable. In our context the system could experience thrashing, the 

amount of useful time dedicated to the execution of applications becomes increasingly 

small and most of the system resources are occupied by management functions. 

There are three main sources of instability in any control system: 

 

1. The delay in getting the system reaction after a control action. 
 
2. The granularity of the control, the fact that a small change enacted by the 

controllers leads to very large changes of the output. 
 
3. Oscillations, which occur when the changes of the input are too large and the 

control is too weak, such that the changes of the input propagate directly to the 

output. 
 

Two types of policies are used in autonomic systems: (i) threshold-based policies 

and (ii) sequential decision policies based on Markovian decision models. In the first 

case, upper and lower bounds on performance trigger adaptation through resource 

reallocation. Such policies are simple and intuitive but require setting per-application 

thresholds. 

 

Lessons learned from the experiments with two levels of controllers and the two 

types of policies are discussed in. A first observation is that the actions of the control 

system should be carried out in a rhythm that does not lead to instability. Adjustments 

should be carried out only after the performance of the system has stabilized. The 

controller should measure the time for an application to stabilize and adapt to the 

manner in which the controlled system reacts. 

  

If upper and lower thresholds are set, instability occurs when they are too close to one 

another if the variations of the workload are large enough and the time required to 

adapt does not allow the system to stabilize. The actions consist of 

allocation/deallocation of one or more virtual machines; sometimes 

allocation/deallocation of a single VM required by one of the thresholds may cause 

crossing of the other threshold and this may represent, another source of instability. 
 

 

6.4  Feedback control based on dynamic thresholds 
 

The elements involved in a control system are sensors, monitors, and actuators. The 

sensors measure the parameter(s) of interest, then transmit the measured values to a 

monitor, which determines whether the system behavior must be changed, and, if so, it 

requests that the actuators carry out the necessary actions. Often the parameter used 

for admission control policy is the current system load; when a threshold, e.g., 80%, is 

reached, the cloud stops accepting additional load. 
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In practice, the implementation of such a policy is challenging or outright 

infeasible. First, due to the very large number of servers and to the fact that the load 

changes rapidly in time, the estimation of the current system load is likely to be 

inaccurate. Second, the ratio of average to maximal resource requirements of 

individual users specified in a service-level agreement is typically very high. Once an 

agreement is in place, user demands must be satisfied; user requests for additional 

resources within the SLA limits cannot be denied. 

 

Thresholds. A threshold is the value of a parameter related to the state of a system 

that triggers a change in the system behavior. Thresholds are used in control theory to 

keep critical parameters of a system in a predefined range. The threshold could be 

static, defined once and for all, or it could be dynamic. A dynamic threshold could be 

based on an average of measurements carried out over a time interval, a so-called 

integral control. The dynamic threshold could also be a function of the values of 

multiple parameters at a given time or a mix of the two. 

 

To maintain the system parameters in a given range, a high and a low threshold are 

often defined. The two thresholds determine different actions; for example, a high 

threshold could force the system to limit its activities and a low threshold could 

encourage additional activities. Control granularity refers to the level of detail of the 

information used to control the system. Fine control means that very detailed 

information about the parameters controlling the system state is used, whereas coarse 

control means that the accuracy of these parameters is traded for the efficiency of 

implementation. 

 

Proportional Thresholding. Application of these ideas to cloud computing, in 

particular to the IaaS delivery model, and a strategy for resource management called 

proportional thresholding are discussed in . The questions addressed are: 

 

• Is it beneficial to have two types of controllers, (1) application controllers that 

determine whether additional resources are needed and (2) cloud controllers that 

arbitrate requests for resources and allocate the physical resources? 

 

• Is it feasible to consider fine control? Is course control more adequate in a cloud 

computing environment? 
 

• Are dynamic thresholds based on time averages better than static ones? 

 

• Is it better to have a high and a low threshold, or it is sufficient to define only a high 

threshold? 

 

The first two questions are related to one another. It seems more appropriate to have 

two controllers, one with knowledge of the application and one that’s aware of the 

state of the cloud. In this case a coarse control is more adequate for many reasons. As 

mentioned earlier, the cloud controller can only have a very rough approximation of 

the cloud state. Moreover, to simplify its resource management policies, the service 

provider may want to hide some of the information it has. For example, it may not 

allow a VM to access information available to VMM-level sensors and actuators. 

 

To answer the last two questions, we have to define a measure of “goodness.” In the 

experiments reported in , the parameter measured is the average CPU utilization, and 

one strategy is better than another if it reduces the number of requests made by the 

application controllers to add or remove virtual machines to the pool of those available 

to the application. 
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Devising a control theoretical approach to address these questions is challenging. 

The authors of ] adopt a pragmatic approach and provide qualitative arguments; they 

also report simulation results using a synthetic workload for a transaction-oriented 

application, a Web server. 

 

The essence of the proportional thresholding is captured by the following algorithm: 

 

1. Compute the integral value of the high and the low thresholds as averages of the 

maximum and, respectively, the minimum of the processor utilization over the 

process history. 
2. Request additional VMs when the average value of the CPU utilization over the 

current time slice exceeds the high threshold. 
3. Release a VM when the average value of the CPU utilization over the current time 

slice falls below the low threshold. 
 

The conclusions reached based on experiments with three VMs are as follows: (a) 

dynamic thresholds perform better than static ones and (b) two thresholds are better 

than one. Though conforming to our intuition, such results have to be justified by 

experiments in a realistic environment. Moreover, convincing results cannot be based 

on empirical values for some of the parameters required by integral control equations. 

 
6.5 Coordination of specialized autonomic performance managers 

Can specialized autonomic performance managers cooperate to optimize power 

consumption and, at the same time, satisfy the requirements of SLAs? This is the 

question examined by a group from IBM Research in a 2007 paper. The paper reports 

on actual experiments carried out on a set of blades mounted on a chassis (see Figure 

6.3 for the experimental setup). Extending the techniques discussed in this report to a 

large-scale farm of servers poses significant problems; computational complexity is 

just one of them. 

Virtually all modern processors support dynamic voltage scaling (DVS) as a 

mechanism for energy saving. Indeed, the energy dissipation scales quadratically with 

the supply voltage. The power management controls the CPU frequency and, thus, the 

rate of instruction execution. For some compute-intensive workloads the performance 

decreases linearly with the CPU clock frequency, whereas for others the effect of 

lower clock frequency is less noticeable or nonexistent. The clock frequency of 

individual blades/servers is controlled by a power manager, typically implemented in 

the firmware; it adjusts the clock frequency several times a second. 
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FIGURE 6.3: Autonomous performance and power managers cooperate to ensure SLA 
prescribed performance and energy optimization. They are fed with performance and power 

data and implement the performance and power management policies, respectively. 
 

 

The approach to coordinating power and performance management in [187] is based 

on several ideas: 

 

• Use a joint utility function for power and performance. The joint performance-

power utility function, U pp ( R, P ), is a function of the response time, R, and 

the power, P , and it can be of the form

with U ( R) the utility function based on response time only and a parameter to 

weight the influence of the two factors, response time and power. 

 

• Identify a minimal set of parameters to be exchanged between the two managers. 

 

• Set up a power cap for individual systems based on the utility-optimized power 

management policy. 

 

• Use a standard performance manager modified only to accept input from the 

power manager regard-ing the frequency determined according to the power 

management policy. The power manager consists of Tcl (Tool Command 

Language) and C programs to compute the per-server (per-blade) power caps 

and send them via IPMI
5
 to the firmware controlling the blade power. The 

power manager and the performance manager interact, but no negotiation 

between the two agents is involved. 

 

 Intelligent Platform Management Interface (IPMI) is a standardized computer 

system interface developed by Intel and used by system administrators to manage a 

computer system and monitor its operation.
 

 

• Use standard software systems. For example, use the WebSphere Extended 

Deployment (WXD), middleware that supports setting performance targets for 

individual Web applications and for the monitor response time, and periodically 

recompute the resource allocation parameters to meet the targets set. Use the Wide-

Spectrum Stress Tool from the IBM Web Services Toolkit as a workload generator. 

 

For practical reasons the utility function was expressed in terms of nc , the number 

of clients, and pκ , the powercap, as in 

 

U ( pκ , nc ) = U pp ( R( pκ , nc ), P ( pκ , nc )). (6.19) 

The optimal powercap pκ
opt

  is a function of the workload intensity expressed by the 

number of 

clients, nc ,     

( 
p 

     

p
opt

 (n 

c

) 
= 

arg max 

U 

κ

, 
n 

c

). (6.20) 

κ       

The hardware devices used for these experiments were the Goldensbridge blades 

each with an Intel Xeon processor running at 3 GHz with 1 GB of level 2 cache and 2 

GB of DRAM and with hyperthreading enabled. A blade could serve 30 to 40 clients 

with a response time at or better than a 1,000 msec limit. When pk is lower than 80 

Watts, the processor runs at its lowest frequency, 375 MHz, whereas for pk at or larger 

than 110 Watts, the processor runs at its highest frequency, 3 GHz. 
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Three types of experiments were conducted: (i) with the power management turned 

off; (ii) when the dependence of the power consumption and the response time were 

determined through a set of exhaustive experiments; and (iii) when the dependency of 

the powercap pκ on nc was derived via reinforcement-learning models. 

 

The second type of experiment led to the conclusion that both the response time and 

the power consumed are nonlinear functions of the powercap, pκ , and the number of 

clients, nc ; more specifically, the conclusions of these experiments are: 

 

• At a low load the response time is well below the target of 1,000 msec. 

• At medium and high loads the response time decreases rapidly when pk increases 

from 80 to 110 watts. 

 

• For a given value of the powercap, the consumed power increases rapidly as the 

load increases. 

 

The machine learning algorithm used for the third type of experiment was based on 

the Hybrid Reinforcement Learning algorithm described in [349]. In the experiments 

using the machine learning model, the powercap required to achieve a response time 

lower than 1,000 msec for a given number of clients was the lowest when = 0.05 and 

the first utility function given by Eq. (6.18) was used. For example, when nc = 50, then 

pκ = 109 Watts when = 0.05, whereas pκ = 120 when = 0.01. 

 

6.6  A utility-based model for cloud-based Web services  
A utility function relates the “benefits” of an activity or service with the “cost” 

to provide the service. 

 

For example, the benefit could be revenue and the cost could be the power 

consumption. 

 

A service-level agreement (SLA) often specifies the rewards as well as the penalties 

associated with specific performance metrics. Sometimes the quality of services 

translates into average response time; this is the case of cloud-based Web services 

when the SLA often explicitly specifies this requirement. 

 
 

 

 
FIGURE 6.4:  The utility function U(R) is a series of step functions with jumps corresponding 

to the response time, R = R0|R1|R2, when the reward and the penalty levels change 
according to the SLA. The dotted line shows a quadratic approximation of the utility 

function. 
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For example, Figure 6.4 shows the case when the performance metrics is R, the 

response time. The largest reward can be obtained when R R0; a slightly lower reward 

corresponds to R0 < R R1. When R1 < R R2, instead of gaining a reward, the provider of 

service pays a small penalty; the penalty increases when R > R2. A utility function, U ( 
R), which captures this behavior, is a sequence of step functions. The utility function 

is sometimes approximated by a quadratic curve, as we shall see in Section 6.2. 

 

In this section we discuss a utility-based approach for autonomic management. The 

goal is to max-imize the total profit computed as the difference between the revenue 

guaranteed by an SLA and the total cost to provide the services. Formulated as an 

optimization problem, the solution discussed in [9] addresses multiple policies, 

including QoS. The cloud model for this optimization is quite complex and requires a 

fair number of parameters. 

 

We assume a cloud providing |K | different classes of service, each class k 

involving Nk applications. For each class k ∈ K call vk the revenue (or the penalty) 

associated with a response time rk and assume a linear dependency for this utility 

function of the form vk = vk
max

 1 − rk /rk
max

 , see Figure 6.5(a). Call mk = −vk
max

 /rk
max

 

the slope of the utility function. 

 

The system is modeled as a network of queues with multiqueues for each server and 

with a delay center that models the think time of the user after the completion of 

service at one server and the start of processing at the next server [see Figure 6.5(b)]. 

Upon completion, a class k request either completes with probability (1− k ∈K πk,k ) or 

returns to the system as a class k request with transition probability πk,k . Call λk the 

external arrival rate of class k requests and k the aggregate rate for class 

k, where k = λk + k ∈K k πk,k . 

 

 
FIGURE 6.5:  The utility function, vk the revenue (or the penalty) associated with a response 

time rk for a request of class k ∈ K . The slope of the utility function is mk = −vk
max

 /rk
max

 . (b) A 

network of multiqueues. At each server Si there are |K | queues for each one of the k ∈ K 

classes of requests. A tier consists of all requests of class k ∈ K at all servers Sij ∈ I, 1<=j<=6. 

 

Typically, CPU and memory are considered representative for resource allocation; 

for simplicity we assume a single CPU that runs at a discrete set of clock frequencies 

and a discrete set of supply voltages according to a Dynamic Voltage and Frequency 
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frequency. The scheduling of a server is work-conserving
6
 and is modeled as a 

Generalized Processor Sharing (GPS) scheduling. Analytical models [4,280] are too 

complex for large systems. 

 

The optimization problem formulated in  involves five terms: A and B reflect 

revenues; C the cost of servers in a low-power, stand-by mode; D the cost of active 

servers, given their operating frequency; 

 

 , the cost of switching servers from low-power, stand-by mode to active state, and F 

, the cost of migrating VMs from one server to another. There are nine constraints 1, 2, 
. . . , 9 for this mixed-integer, nonlinear programming problem. The decision variables 

for this optimization problem are listed in Table 6.2 and the parameters used are 

shown in Table 6.3. 
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Clearly, this approach is not scalable to clouds with a very large number of servers. 

Moreover, the large number of decision variables and parameters of the model make this 

approach infeasible for a realistic cloud computing resource management strategy. 

6.7 Resource bundling: Combinatorial auctions for cloud resources 
Resources in a cloud are allocated in bundles, allowing users get maximum 

benefit from a specific combination of resources. Indeed, along with CPU cycles, an 

application needs specific amounts of main memory, disk space, network bandwidth, 

and so on. Resource bundling complicates traditional resource allocation models and 

has generated interest in economic models and, in particular, auction algorithms. In 

the context of cloud computing, an auction is the allocation of resources to the highest 

bidder. 

 

Combinatorial Auctions. Auctions in which participants can bid on combinations of 

items, or pack-ages, are called combinatorial auctions . Such auctions provide a 

relatively simple, scalable, and tractable solution to cloud resource allocation. Two 

recent combinatorial auction algorithms are the simultaneous clock auction and the 

clock proxy auction . The algorithm discussed in this chap-ter and introduced in  is 

called the ascending clock auction (ASCA). In all these algorithms the current price for 

each resource is represented by a “clock” seen by all participants at the auction. 

The final auction prices for individual resources are given by the vector p = ( p1, p2, 
. . . , p 

R
 ) and the amounts of resources allocated to user u are xu = (xu

1, xu
2, . . . , x u

R
 

). Thus, the expression [(xu )
T
 p] represents the total price paid by user u for the bundle 

of resources if the bid is successful at time T . The scalar [minq∈Qu (q 
T
 p)] is the final 

price established through the bidding process. 
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The bidding process aims to optimize an objective function f (x , p). This function 

could be tailored to measure the net value of all resources traded, or it can measure the 

total surplus – the difference between the maximum amount users are willing to pay 

minus the amount they pay. Other optimization functions could be considered for a 

specific system, e.g., the minimization of energy consumption or of security risks. 

 

Pricing and Allocation Algorithms. A pricing and allocation algorithm partitions the 

set of users into two disjoint sets, winners and losers, denoted as W and L, 

respectively. The algorithm should: 

 

1. Be computationally tractable. Traditional combinatorial auction algorithms such 

as Vickey-Clarke-Groves (VLG) fail this criteria, because they are not 

computationally tractable. 
2. Scale well. Given the scale of the system and the number of requests for service, 

scalability is a necessary condition. 
3. Be objective. Partitioning in winners and losers should only be based on the price 

πu of a user’s bid. If the price exceeds the threshold, the user is a winner; 

otherwise the user is a loser. 
4. Be fair. Make sure that the prices are uniform. All winners within a given 

resource pool pay the same price. 
5. Indicate clearly at the end of the auction the unit prices for each resource pool. 
6. Indicate clearly to all participants the relationship between the supply and the 

demand in the system. 
 

The function to be maximized is 

 
 

The constraints in Table 6.4 correspond to our intuition: (a) the first one states that a 

user either gets one of the bundles it has opted for or nothing; no partial allocation is 

acceptable. (b) The second constraint expresses the fact that the system awards only 

available resources; only offered resources can be allocated. (c) The third constraint is 

that the bid of the winners exceeds the final price. (d) The fourth constraint states that 

the winners get the least expensive bundles in their indifference set. (e) The fifth 

constraint states that losers bid below the final price. (f) The last constraint states that 

all prices are positive numbers. 

 

 
 

 

The ASCA Combinatorial Auction Algorithm. Informally, in the ASCA algorithm 

the par-ticipants at the auction specify the resource and the quantities of that resource 

offered or desired at the price listed for that time slot. Then the excess vector 
 

 

 

is computed. If all its components are negative, the auction stops; negative 

components mean that the demand does not exceed the offer. If the demand is larger 

than the offer, z(t ) 0, the auctioneer increases the price for items with a positive 
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excess demand and solicits bids at the new price. Note that the algorithm satisfies 

conditions 1 through 6; from Table 6.3 all users discover the price at the same time 

and pay or receive a “fair” payment relative to uniform resource prices, the 

computation is tractable, and the execution time is linear in the number of participants 

at the auction and the number of resources. The computation is robust and generates 

plausible results regardless of the initial parameters of the system. 

 

There is a slight complication as the algorithm involves user bidding in multiple 

rounds. To address this problem the user proxies automatically adjust their demands 

on behalf of the actual bidders, as shown in Figure 6.6. These proxies can be modeled 

as functions that compute the “best bundle” from each Qu set given the current price 

 

 

 
 

The input to the ASCA algorithm: U users, R resources, p¯  the starting price, and the 

update increment function, g : (x , p) → RR
. The pseudocode of the algorithm is: 

 

 

 

FIGURE 6.6: The schematics of the ASCA algorithm. To allow for a single round, auction users 
are represented by proxies that place the bids xu (t). The auctioneer determines whether there 

is an excess demand and, in that case, raises the price of resources for which the demand 
exceeds the supply and requests new bids. 
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In this algorithm g(x (t ), p(t )) is the function for setting the price increase. This 

function can be correlated with the excess demand z(t ), as in g(x (t ), p(t )) = αz(t )+
 

(the notation x 
+
 means max (x , 0)) with α a positive number. An alternative is to 

ensure that the price does not increase by an amount larger than δ. In that case g(x (t ), 
p(t )) = min (αz(t )+, δe) with e = (1, 1, . . . , 1) is an R-dimensional vector and 

minimization is done componentwise. 

 

The convergence of the optimization problem is guaranteed only if all participants 

at the auction are either providers of resources or consumers of resources, but not both 

providers and consumers at the same time. Nevertheless, the clock algorithm only 

finds a feasible solution; it does not guarantee its optimality. 

The authors of  have implemented the algorithm and allowed internal use of it 

within Google. Their preliminary experiments show that the system led to substantial 

improvements. One of the most interesting side effects of the new resource allocation 

policy is that users were encouraged to make their applications more flexible and 

mobile to take advantage of the flexibility of the system controlled by the ASCA 

algorithm. 
 

An auctioning algorithm is very appealing because it supports resource bundling 

and does not require a model of the system. At the same time, a practical 

implementation of such algorithms is challenging. First, requests for service arrive at 

random times, whereas in an auction all participants must react to a bid at the same 

time. Periodic auctions must then be organized, but this adds to the delay of the 

response. Second, there is an incompatibility between cloud elasticity, which 

guarantees that the demand for resources of an existing application will be satisfied 

immediately, and the idea of periodic auctions. 
 

 

6.8 Scheduling algorithms for computing clouds 
Scheduling is a critical component of cloud resource management. Scheduling is 

responsible for resource sharing/multiplexing at several levels. A server can be shared 

among several virtual machines, each virtual machine could support several 

applications, and each application may consist of multiple threads. CPU scheduling 

supports the virtualization of a processor, the individual threads acting as virtual 

processors; a communication link can be multiplexed among a number of virtual 

channels, one for each flow. 

 

In addition to the requirement to meet its design objectives, a scheduling algorithm 

should be efficient, fair, and starvation-free. The objectives of a scheduler for a batch 

system are to maximize the throughput (the number of jobs completed in one unit of 

time, e.g., in one hour) and to minimize the turnaround time (the time between job 

submission and its completion). For a real-time system the objectives are to meet the 

deadlines and to be predictable. Schedulers for systems supporting a mix of tasks – 

some with hard real-time constraints, others with soft, or no timing constraints – are 

often subject to contradictory requirements. Some schedulers are preemptive, allowing 

a high-priority task to interrupt the execution of a lower-priority one; others are 

nonpreemptive. 

 

Two distinct dimensions of resource management must be addressed by a 

scheduling policy: (a) the amount or quantity of resources allocated and (b) the timing 
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when access to resources is granted. Figure 6.7 identifies several broad classes of 

resource allocation requirements in the space defined by these two dimensions: best-

effort, soft requirements, and hard requirements. Hard-real time systems are the most 

challenging because they require strict timing and precise amounts of resources. 

 

There are multiple definitions of a fair scheduling algorithm. First, we discuss the 

max-min fairness criterion [128]. Consider a resource with bandwidth B shared among 

n users who have equal rights. Each user requests an amount bi and receives Bi . Then, 

according to the max-min criterion, the following conditions must be satisfied by a 

fair allocation: 

C1.The amount received by any user is not larger than the amount requested, Bi bi . 

C2. If the minimum allocation of any user is Bmi n no allocation satisfying condition C1 has 

a higher Bmi n than the current allocation. 

C3. When we remove the user receiving the minimum allocation Bmi n and then reduce the 

total amount of the resource available from B to ( B − Bmi n ), the condition C2 remains 

recursively true. 

A fairness criterion for CPU scheduling [142] requires that the amount of work in 

the time interval from t1 to t2 of two runnable threads a and b, a (t1, t2) and b (t1, t2), 
respectively, minimize the expression 

 

 
FIGURE 6.7: Best-effort policies do not impose requirements regarding either the amount of 
resources allocated to an application or the timing when an application is scheduled. Soft-

requirements allocation policies require statistically guaranteed amounts and timing 
constraints; hard-requirements allocation policies demand strict timing and precise amounts of 

resources. 

 

where wa and wb are the weights of the threads a and b, respectively. 

The quality-of-service (QoS) requirements differ for different classes of cloud 

applications and demand different scheduling policies. Best-effort applications such as 

batch applications and analytics
7
 do not require QoS guarantees. Multimedia 

applications such as audio and video streaming have soft real-time constraints and 

require statistically guaranteed maximum delay and throughput. Applications with 

hard real-time constraints do not use a public cloud at this time but may do so in the 

future. 

 

Round-robin, FCFS, shortest-job-first (SJF), and priority algorithms are among the 

most common scheduling algorithms for best-effort applications. Each thread is given 

control of the CPU for a definite period of time, called a time-slice, in a circular 

fashion in the case of round-robin scheduling. The algorithm is fair and starvation-

free. The threads are allowed to use the CPU in the order in which they arrive in the 

case of the FCFS algorithms and in the order of their running time in the case of SJF 

algorithms. Earliest deadline first (EDF) and rate monotonic algorithms (RMA) are 

used for real-time applications. Integration of scheduling for the three classes of 

application is discussed in [56], and two new algorithms for integrated scheduling, 

resource allocation/dispatching (RAD) and rate-based earliest deadline (RBED) are 

proposed. 

 

Next we discuss several algorithms of special interest for computer clouds. These 

algorithms illustrate the evolution in thinking regarding the fairness of scheduling and 

the need to accommodate multi-objective scheduling – in particular, scheduling for 

multimedia applications. 
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6.9  Fair queuing 
Computing and communication on a cloud are intimately related. Therefore, it 

should be no surprise that the first algorithm we discuss can be used for scheduling 

packet transmission as well as threads. Interconnection networks allow cloud servers 

to communicate with one another and with users. These networks consist of 

communication links of limited bandwidth and switches/routers/gateways of limited 

capacity. When the load exceeds its capacity, a switch starts dropping packets because 

it has limited input buffers for the switching fabric and for the outgoing links, as well 

as limited CPU cycles. 

 

A switch must handle multiple flows and pairs of source-destination endpoints of 

the traffic. Thus, a scheduling algorithm has to manage several quantities at the same 

time: the bandwidth, the amount of data each flow is allowed to transport; the timing 

when the packets of individual flows are transmitted; and the buffer space allocated to 

each flow. A first strategy to avoid network congestion is to use a FCFS scheduling 

algorithm. The advantage of the FCFS algorithm is a simple management of the three 

quantities: bandwidth, timing, and buffer space. Nevertheless, the FCFS algorithm 

does not guarantee fairness; greedy flow sources can transmit at a higher rate and 

benefit from a larger share of the bandwidth. 

 

To address this problem, a fair queuing algorithm proposed in requires that separate 

queues, one per flow, be maintained by a switch and that the queues be serviced in a 

round-robin manner. This algorithm guarantees the fairness of buffer space 

management, but does not guarantee fairness of bandwidth allocation. Indeed, a flow 

transporting large packets will benefit from a larger bandwidth (see Figure 6.8). 

 

The fair queuing (FQ) algorithm in [102] proposes a solution to this problem. First, 

it introduces a bit-by-bit round-robin (BR) strategy; as the name implies, in this rather 

impractical scheme a single bit from each queue is transmitted and the queues are 

visited in a round-robin fashion. Let R(t ) be the 

 

number of rounds of the BR algorithm up to time t and Nact i ve (t ) be the number of 

active flows through the switch. Call ti
a
 the time when the packet i of flow a, of size 

Pi
a
 bits arrives, and call Si

a
 and Fi

a
 the 

 

values of R(t ) when the first and the last bit, respectively, of the packet i of flow a are 

transmitted. Then, 

Fi
a
 = Si

a
 + Pi

a
   and  Si

a
 = max  Fi

a
−1, R ti

a
    . (6.28)

The quantities R(t ), Nact i v e (t ), Si
a
 , and Fi

a
 depend only on the arrival time of the 

packets, ti
a
 , and not on their transmission time, provided that a flow a is active as long 

as 

R(t )Fi
a
   when  i = max  j |ti

a
t  . (6.29) 

The authors of ] use for packet-by-packet transmission time the following 

nonpreemptive schedul-ing rule, which emulates the BR strategy: The next packet to 

be transmitted is the one with the smallest Fi
a
 . A preemptive version of the algorithm 

requires that the transmission of the current packet be interrupted as soon as one with 

a shorter finishing time, Fi
a
 , arrives. 
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FIGURE 6.8 

 
 

A fair allocation of the bandwidth does not have an effect on the timing of the transmission. 

A possible strategy is to allow less delay for the flows using less than their fair share of the 

bandwidth. The same paper [102] proposes the introduction of a quantity called the bid, Bi
a
 , 

and scheduling the packet transmission based on its value. The bid is defined as 

 

Bi
a
 = Pi

a
 + max  Fi

a
−1,  R  ti

a
   − δ   , (6.30)

with δ a nonnegative parameter. The properties of the FQ algorithm, as well as the 

implementation of a nonpreemptive version of the algorithms, are analyzed in. 

 

6.10  Start-time fair queuing 
 

A hierarchical CPU scheduler for multimedia operating systems was proposed 

in. The basic idea of the start-time fair queuing (SFQ) algorithm is to organize the 

consumers of the CPU bandwidth in a tree structure; the root node is the processor and 

the leaves of this tree are the threads of each application. A scheduler acts at each 

level of the hierarchy. The fraction of the processor bandwidth, B, allocated to the 

intermediate node i is 

Bi 

=

 wi 

(6.31)

B  

n 

 j =1 
w
 j  

with w j , 1 j n, the weight of the n children of node i ; see the example in Figure 

6.9. 

 

When a virtual machine is not active, its bandwidth is reallocated to the other VMs 

active at the time. When one of the applications of a virtual machine is not active, its 

allocation is transferred to the other applications running on the same VM. Similarly, 

if one of the threads of an application is not runnable, its allocation is transferred to 

the other threads of the applications. 
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 FIGURE 6.9: The SFQ tree for scheduling when two virtual machines, VM1 and VM2, 
run on a powerful server. VM1 runs two best-effort applications A1, with three threads t1,1, t1,2, 
and t1,3, and A2 with a single thread, t2. VM2 runs a video-streaming application, A3, with three 
threads vs1, vs2, and vs3. The weights of virtual machines, applications, and individual threads 

are shown in parenthesis. 

 

Call va (t ) and vb (t ) the virtual time of threads a and b, respectively, at real time t . 

The virtual time of the scheduler at time t is denoted by v(t ). Call q the time quantum 

of the scheduler in milliseconds. The threads a and b have their time quanta, qa and qb 

, weighted by wa and wb , respectively; thus, in our example, the time quanta of the 

two threads are q/wa and q/wb , respectively. The i -th activation 

of thread a will start at the virtual time S
i
  and will finish at virtual time 

F 
i
 . We call τ j 

the real time 

of

 a  a  

the j -th invocation of the scheduler.    

An SFQ scheduler follows several rules:    

 

R1. 

The threads are serviced in the order of their virtual start-up time; ties are broken 

arbitrarily. 

R2. 

The virtual startup time of the i -th activation of 

thread x is    

 Sxi (t ) = max  v  τ j   , Fx(i −1)(t ) and Sx
0
 = 0. (6.32)

 

The condition for thread i to be started is that thread (i − 1) has finished and that the 

scheduler is active. 

R3. The virtual finish time of the i -th activation of thread x is 

 

Fx
i
 (t ) = Sx

i
 (t ) 

+ 

q 

(6.33)wx 
. 

 

A thread is stopped when its time quantum has expired; its time quantum is the time 

quantum of the scheduler divided by the weight of the thread. 

R4. The virtual time of all threads is initially zero, vx
0
 = 0. The virtual time v(t ) at real 

time t is computed as follows: 

 

v(t ) = 

Virtual start time of the thread in service at 

time t , if CPU is busy 

(6.34)

Maximum finish virtual time of any 

thread, if CPU is idle. 
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In this description of the algorithm we have included the real time t to stress the 

dependence of all events in virtual time on the real time. To simplify the notation we 

use in our examples the real time as the index of the event. In other words, Sa
6
 means 

the virtual start-up time of thread a at real time t = 6. 

 

Example. The following example illustrates the application of the SFQ algorithm 

when there are two threads with the weights wa = 1 and wb = 4 and the time quantum 

is q = 12 (see Figure 6.10.) 

Initially Sa
0
 = 0, Sb

0
 = 0, va (0) = 0, and vb (0) = 0. Thread b blocks at time t = 24 

and wakes up at time t = 60. 

The scheduling decisions are made as follows: 

 

 1. t = 0: We have a tie, Sa
0
 = Sb

0
, and arbitrarily thread b is chosen to run first. The 

virtual finish time of thread b is 

Fb
0
 = Sb

0
 + q/wb = 0 + 12/4 = 3. (6.35)

 2. t = 3: Both threads are runnable and thread b was in service; thus, v(3) = Sb
0
 = 0; 

then 

  Sb
1
 = max[v(3), Fb

0] = max (0, 3) = 3. (6.36)

But 

S
0 < S1 , thus thread a is selected to run. Its virtual finish time is  

a b   

  Fa
0
 = Sa

0
 + q/wa = 0 + 12/1 = 12. (6.37)

 

 3. t = 15: Both threads are runnable, and thread a was in service at this time; thus, 
 

v(15) = Sa
0 = 0 (6.38)

and  

Sa
1
 = max[v(15), Fa

0] = max[0, 12] = 12. (6.39)

As Sb
1
 = 3 < 12, thread b is selected to run; the virtual finish time of 

thread b is now  

Fb
1
 = Sb

1
 + q/wb = 3 + 12/4 = 6. (6.40)

 

 4. t = 18: Both threads are runnable, and thread b was in service at this time; thus, 
 

v(18) = Sb
1 = 3 (6.41)

and  

Sb
2
 = max[v(18), Fb

1] = max[3, 6] = 6. (6.42)

As Sb
2
 < Sa

1
 = 12, thread b is selected to run again; its virtual finish 

time is  

Fb
2
 = Sb

2
 + q/wb = 6 + 12/4 = 9. (6.43)

 

 5. t = 21: Both threads are runnable, and thread b was in service at this time; thus, 
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FIGURE 6.10: Top, the virtual start-up time Sa (t) and Sb (t) and the virtual finish time Fa (t) 
and Fb (t) function of the real time for each activation of threads a and b, respectively, are 

marked at the top and bottom of the box representing a running thread. The virtual time of the 
scheduler v (t) function of the real time is shown on the bottom graph. 

  

As Sb
2
 < Sa

1
 = 12, thread b is selected to run again; its virtual finish time is  

Fb
3
 = Sb

3
 + q/wb = 9 + 12/4 = 12. (6.46) 

6. t = 24: Thread b was in service at this time; thus,  

v(24) = Sb
3 = 9 (6.47) 

Sb
4
 = max[v(24), Fb

3] = max[9, 12] = 12. (6.48) 

Thread b is suspended till t = 60; thus, thread a is activated. Its virtual finish 

time is  

Fa
1
 = Sa

1
 + q/wa = 12 + 12/1 = 24. (6.49) 

 

 t = 36: Thread a was in service and the only runnable thread at this time; thus, 
 

v(36) = Sa
1 = 12 (6.50) 

and  

Sa
2
 = max[v(36), Fa

2] = max[12, 24] = 24. (6.51) 

Then,  

Fa
2
 = Sa

2
 + q/wa = 24 + 12/1 = 36. (6.52) 

 

 t = 48: Thread a was in service and is the only runnable thread at this time; thus, 
 

v(48) = Sa
2 = 24 (6.53) 

and  

Sa
3
 = max[v(48), Fa

2] = max[24, 36] = 36. (6.54) 

Then,  

Fa
3
 = Sa

3
 + q/wa = 36 + 12/1 = 48. (6.55) 
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9. t = 60: Thread a was in service at this time; thus,  

v(60) = Sa
3 = 36 (6.56) 

and  

Sa
4
 = max[v(60), Fa

3] = max[36, 48] = 48. (6.57) 

But now thread b is runnable and Sb
4
 = 12.  

Thus, thread b is activated and  

Fb
4
 = Sb

4
 + q/wb = 12 + 12/4 = 15. (6.58) 

 

Several properties of the SFQ algorithm are proved in . The algorithm allocates 

CPU fairly when the available bandwidth varies in time and provides throughput as 

well as delay guarantees. The algorithm schedules the threads in the order of their 

virtual start-up time, the shortest one first; the length of the time quantum is not 

required when a thread is scheduled but only after the thread has finished its current 

allocation. The authors of report that the overhead of the SFQ algorithms is 

comparable to that of the Solaris scheduling algorithm. 
 

6.11  Borrowed virtual time 
 

The objective of the borrowed virtual time (BVT) algorithm is to support low-

latency dispatching of real-time applications as well as a weighted sharing of the CPU 

among several classes of applications [107]. Like SFQ, the BVT algorithm supports 

scheduling of a mix of applications, some with hard, some with soft real-time 

constraints, and applications demanding only a best effort. 

 

Thread i has an effective virtual time, Ei , an actual virtual time, Ai , and a virtual 

time warp, Wi . The scheduler thread maintains its own scheduler virtual time (SVT), 

defined as the minimum actual virtual time A j of any thread. The threads are 

dispatched in the order of their effective virtual time, Ei, a policy called the earliest 

virtual time (EVT). 

 

The virtual time warp allows a thread to acquire an earlier effective virtual time – in 

other words, to borrow virtual time from its future CPU allocation. The virtual warp 

time is enabled when the variable warpBack is set. In this case a latency-sensitive 

thread gains dispatching preference as 

Ei  

←  

A
i 

− 

if 

warpBac

k 

= 

OFF 

(6.59) 
A
i Wi   if 

warpBac

k ON. 

     =   

 

The algorithm measures the time in minimum charging units (mcu) and uses a time 

quantum called context switch allowance (C), which measures the real time a thread is 

allowed to run when com-peting with other threads, measured in multiples of mcu. 

Typical values for the two quantities are mcu = 100 µsec and C = 100 msec. A thread 

is charged an integer number of mcu. 

 

Context switches are triggered by traditional events, the running thread is blocked 

waiting for an event to occur, the time quantum expires, and an interrupt occurs. 

Context switching also occurs when a thread becomes runnable after sleeping. When 

the thread τi becomes runnable after sleeping, its actual virtual time is updated as 

follows: 

 

Ai  ← max[ Ai , S V T ]. (6.60) 
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This policy prevents a thread sleeping for a long time to claim control of the CPU for 

a longer period of time than it deserves. 

 

If there are no interrupts, threads are allowed to run for the same amount of virtual 

time. Individual threads have weights; a thread with a larger weight consumes its 

virtual time more slowly. In practice, each thread τi maintains a constant ki and uses its 

weight wi to compute the amount used to advance its actual virtual time upon 

completion of a run: 

Ai  ← Ai +   . (6.61) 

Given two threads a and b, 

ka 

 

kb 

  

= = . (6.62) 

  

wa wb 

 

The EVT policy requires that every time the actual virtual time is updated, a context 

switch from the current running thread τi to a thread τ j occurs if 

 

A jAi − 

C 

. (6.63) wi 

Example 1. The following example illustrates the application of the BVT algorithm 

for scheduling two threads a and b of best-effort applications. The first thread has a 

weight twice that of the second, wa = 2wb ; when ka = 180 and kb = 90, then = 90. 

We consider periods of real-time allocation of C = 9 mcu. The two threads a and b 

are allowed to run for 2C /3 = 6 mcu and C /3 = 3 mcu, respectively. 

Threads a and b are activated at times 

 

a : 0, 5, 5 + 9 = 14, 14 + 9 = 23, 23 + 9 = 32, 32 + 9 = 41, . . . 
(6.64) 

 

b : 2, 2 + 9 = 11, 11 + 9 = 20, 20 + 9 = 29, 29 + 9 = 38, . . . 
 

The context switches occur at real times: 

 

2, 5, 11, 14, 20, 23, 29, 32, 38, 41, . . .(6.65) 

 

 

 

The time is expressed in units of mcu. The initial run is a shorter one, consists of only 

3 mcu; a context switch occurs when a, which runs first, exceeds b by 2 mcu. 

 

Table 6.5 shows the effective virtual time of the two threads at the time of each 

context switch. At that moment, its actual virtual time is incremented by an amount 

equal to if the thread was allowed to run for its time allocation. The scheduler 

compares the effective virtual time of the threads and first runs the one with the 

minimum effective virtual time. 

 

 

www.JntukMaterials.com



 

 
 

 

 

 
 

Figure 6.11 displays the effective virtual time and the real time of threads a and b. When a 

thread is running, its effective virtual time increases as the real time increases; a running 

thread appears as a diagonal line. When a thread is runnable but not running, its effective 

virtual time is constant. A runnable period is displayed as a horizontal line. We see that the 

two threads are allocated equal amounts of virtual time, but thread a, with a larger weight, 

consumes its real time more slowly. 

 

 
Example 1, the effective virtual time and the real time of threads a (solid line) and b (dotted 
line) with weights wa = 2wb when the actual virtual time is incremented in steps of = 90 mcu. 
The real time the two threads are allowed to use the CPU is proportional to their weights. The 
virtual times are equal, but thread a consumes it more slowly. There is no time warp. The 
threads are dispatched based on their actual virtual time. 
 

 

 
Example 2. Next we consider the previous example, but this time there is an additional thread, c, with 

real-time constraints. Thread c wakes up at time t = 9 and then periodically at times t = 18, 27, 36, . . . 
for 3 units of time. 

 

www.JntukMaterials.com



 

Table 6.6 summarizes the evolution of the system when the real-time application thread c competes 

with the two best-effort threads a and b. Context switches occur now at real times 

 

t = 2, 5, 9, 12, 14, 18, 21, 23, 27, 30, 32, 36, 39, 41, . . .(6.66) 

The context switches at times 

t = 9, 18, 27, 36, . . .(6.67) 

are triggered by the waking up of thread c, which preempts the currently running thread. At t = 9 the 

time warp Wc = −60 gives priority to thread c. Indeed, 

Ec (9) = Ac (9) − Wc = 0 − 60 = −60 (6.68)

compared with Ea (9) = 90 and Eb (9) = 90. The same conditions occur every time the real-time thread 

 wakes up. The best-effort application threads have the same effective virtual time when the real-time 

application thread finishes and the scheduler chooses b to be dispatched first. Note that the ratio of real 

times used by a and b is the same, as wa = 2wb . 
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FIGURE 6.12:  Example 2, the effective virtual time and the real time of threads a (thin solid 
line), b (dotted line), and c, with real-time constraints (thick solid line). c wakes up periodically 
at times t = 9, 18, 27, 36, . . ., is active for 3 units of time, and has a time warp of 60 mcu. 
 

Figure 6.12 shows the effective virtual times for the three threads a, b, and c. Every time 

thread c wakes up, it preempts the current running thread and is immediately scheduled to run. 

 

6.12  Cloud scheduling subject to deadlines 
Often, an SLA specifies the time when the results of computations done on the cloud 

should be available. This motivates us to examine cloud scheduling subject to deadlines, a 

topic drawing on a vast body of literature devoted to real-time applications. 

 

 

Task Characterization and Deadlines.  Real-time applications involve periodic or 

aperiodic tasks 

with deadlines. A task is characterized by a tuple ( Ai , σi , Di ), where Ai is the arrival 

time, σi  > 0 is the 

data size of the task, and Di is the relative deadline. Instances of a periodic task,  i
q
 , 

with period q are 

identical

, i
q  ≡ 

q
 , and arrive at times A0, A1, . . . Ai , . . . , with Ai +1 − Ai  = q. The 

deadlines satisfy

the constraint 

Di 

Ai +1 and generally the data size is the same, σi  = σ . The individual 

instances of

aperiodic 

tasks, 
i , are different. Their arrival times Ai are generally uncorrelated, and 

the amount of

data σi is different for different instances. The absolute deadline for the aperiodic task  

i is ( Ai + Di ). We distinguish hard deadlines from soft deadlines. In the first case, if 

the task is not completed by the deadline, other tasks that depend on it may be affected 

and there are penalties; a hard deadline is strict and expressed precisely as 

milliseconds or possibly seconds. Soft deadlines play more of a guideline role and, in 

general, there are no penalties. Soft deadlines can be missed by fractions of the units 

used to express them, e.g., minutes if the deadline is expressed in hours, or hours if the 

deadlines is expressed in days. The scheduling of tasks on a cloud is generally subject 

to soft deadlines, though occasionally 

 

applications with hard deadlines may be encountered. 
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System Model. In our discussion we consider only aperiodic tasks with arbitrarily 

divisible workloads. The application runs on a partition of a cloud, a virtual cloud with 

a head node called S0 and n worker nodes S1, S2, . . . , Sn . The system is 

homogeneous, all workers are identical, and the communication time from the head 

node to any worker node is the same. The head node distributes the workload to 

worker nodes, and this distribution is done sequentially. In this context there are two 

important problems: 

 

1. The order of execution of the tasks i . 

2. The workload partitioning and the task mapping to worker nodes. 
 

Scheduling Policies. The most common scheduling policies used to determine the 

order of execution of the tasks are: 

 

• First in, first out (FIFO). The tasks are scheduled for execution in the order of their 

arrival. 

• Earliest deadline first (EDF). The task with the earliest deadline is scheduled first. 

• Maximum workload derivative first (MWF). 

 

The workload derivative DCi (n
mi n

 ) of a task i when n
mi n

 nodes are assigned to the 

application, is defined as 

DCi (nmi n ) = Wi   nimi n + 1  − Wi   nimi n   , (6.69)

with Wi (n) the workload allocated to 

task execution time of the task, then 

Wi (n) = n 

 when n nodes of the cloud are available; if 

E(σi , n) is the × E(σi , n). The MWF policy 

requires that: 
1. The tasks are scheduled in the order of their derivatives, the one with the 

highest derivative DCi first. 
2. The number n of nodes assigned to the application is kept to a minimum, ni

mi n
 . 

 

We discuss two workload partitioning and task mappings to worker nodes, 

optimal and the equal partitioning. 

 

Optimal Partitioning Rule (OPR). The optimality in OPR refers to the execution 

time; in this case, the workload is partitioned to ensure the earliest possible 

completion time, and all tasks are required to complete at the same time. EPR, as the 

name suggests, means that the workload is partitioned in equal segments. In our 

discussion we use the derivations and some of the notations in; these notations are 

summarized in Table 6.7. 
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FIGURE 6.13: The timing diagram for the optimal partitioning rule. The algorithm requires worker 

nodes to complete execution at the same time. The head node, S0, distributes sequentially the data to 

individual worker nodes. The communication time is i = αi × σ × τ, 1 i n. Worker node Si starts 

processing the data as soon as the transfer is complete. The processing time is i = αi × σ × ρ , 1 i n. 
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From the first two equations we find the relation between α1 and α2 as 

 

α1 = 

α2 

with  β = 

 ρ  

, 0β1. β τ 
+
ρ 

       

This implies that α2 = β × α1. It is easy to see that in the general case 

 

αi  = β × αi −1 = β
i
 
−1

 × α1. 

 

But αi are the components of the load distribution vector; thus, 

 
n 

αi  = 1. 
i =1 

 

Next, we substitute the values of αi and obtain the expression for α1: 

 

α 
1 +
β 

×
α 

1 +
β

2 

×
α 

1 +
β

3 

×
α 

1

. . . β
n−1 

×
α 

1 =
1  or  α 

1 =

1 − β .
 

          1

− 
β

n 
 

                          

 

 

 

 

(6.72

) 

 

 

 

(6.73

) 

 

 

 

 

(6.74

) 

 

 

 

 

(6.75

) 
We have now determined the load distribution vector and we can now determine the execution time as 

 

E 

(n, σ 
) 

=
α 

1 ×
σ 

×
τ 

+
α 

1 × 
σ 

×
ρ 

=

1 − β 
σ (τ 

+
ρ). (6.76)

 

       1

− 
β

n 
   

                       

Call C 
A

(n) the completion time of an application A = ( A, σ, D), which starts processing 

at time t0 and runs on n worker nodes; then 

C 
A

(n) 
=

t
0 

+ E 

(n, σ 
) 

=

t
0 

+ 

1 − β 

σ (τ 
+
ρ). (6.77)

 

    1
− 

β
n 

   
              

The application meets its deadline if and only if 

 

or 
   C 

A
(n)A + D,      (6.78)

     

1 − β 

        

t 
0+ E 

(n, σ 
) t

0 +
σ (τ 

+
ρ) 

 

A 
+

D. (6.79)
 

  = 1− βn      
                

But 0 < β < 1 thus, 1 − β
n
 > 0, and it follows 

that         

  (1 − β )σ (τ + ρ)(1 − β
n
 )( A + D − t0). (6.80)

The application can meet its deadline only if ( A + D − t0) > 0, and under this condition this inequality becomes 

 

β
n 

 
γ   with  γ 

=
1

− 

σ × τ . (6.81)
 

   A + D − t0  

If γ 0, there is not enough time even for data distribution and the application should be 

rejected. 

 

When γ > 0, then n 

ln γ . Thus, the minimum number of nodes for the OPR strategy 

is

 

ln β  

  

nmi n = 

ln 

γ 

. (6.82)

   

  
ln 

β 
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Equal Partitioning Rule (EPR). EPR assigns an equal workload to individual worker 

nodes, αi = 1/n. From the diagram in Figure 6.14 we see that 

 
   n         

σ 
 

σ
  

σ 
   

   
i 

              
                       

                 

× ρ = σ × τ + n × ρ . E
(n, σ )

 =i +   n = 
n

 × n × 
τ
 + n

   =                     

    1                    

The condition for meeting the deadline, C 
A

(n)    A + D, leads to    

t 

 
σ 

 
τ
  σ  

ρ 
 

A 
  D or 

n 
    σ × ρ  

.

0 + × +

 

n 
× 

 

+
 

A + D − t0 − σ × 

 

Thus,        τ
        =A + D − t0 − σ × τ    

      

nmi n 
      σ × ρ 

. 
    

                     

 

 

 

The pseudocode for a general schedulability test for FIFO, EDF, and MWF scheduling 

policies, for two-node allocation policies, MN (minimum number of nodes) and AN (all 

nodes), and for OPR and EPR partitioning rules is given in reference . The same paper reports 

on a simulation study for 10 algorithms. The generic format of the names of the algorithms is 

Sp-No-Pa, with Sp = FIFO/EDF/MWF, No = MN/AN, and Pa = OPR/EPR. For example, 

MWF-MN-OPR uses MWF scheduling, minimum number of nodes, and OPR partitioning. 

The relative performance of the algorithms depends on the relations between the unit cost of 

communication τ and the unit cost of computing ρ. 

 
FIGURE 6.14: The timing diagram for the equal partitioning rule. The algorithm assigns an 

equal workload to individual worker nodes, αi = 1/n. The head node, S0, distributes 

sequentially the data to individual worker nodes. The communication time is i = (σ/n) × τ, 1 i n. 

Worker node Si starts processing the data as soon as the transfer is complete. The processing 

time is i = (σ/n) × ρ , 1 i n. 

 

6.13 Scheduling MapReduce applications subject to 
deadlines 

Now we turn our attention to applications of the analysis in Section 

6.12 and discuss scheduling of MapReduce applications on the cloud subject to 

deadlines. Several options for scheduling Apache Hadoop, an open-source 

implementation of the MapReduce algorithm, are: 

 

• The default FIFO schedule. 

• The Fair Scheduler. 

• The Capacity Scheduler. 

• The Dynamic Proportional Scheduler. 
 

 

 

(6.83

) 

 

 

 

 

(6.84

) 

 

 

(6.85

) 
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A recent paper  applies the deadline scheduling framework analyzed to Hadoop tasks. 

Table 6.8 summarizes the notations used for the analysis of Hadoop; the term slots is 

equivalent with nodes and means the number of instances. 

 

We make two assumptions for our initial derivation: 

 The system is homogeneous; this means that ρm and ρr , the cost of processing a 

unit data by the map and the reduce task, respectively, are the same for all 

servers. 

 

 Load equipartition. 

Under these conditions the duration of the job J with input of size σ is 

E(nm , nr , σ ) 

= σ nm+ φ nr+ τ. (6.86)

  ρm  ρr  

 

Thus, the condition that query Q  =  ( A, σ, D) with arrival time A meets the 

deadline 

expressed as nm+ φ nr  + τ A + D. 
tm

0
 + σ 

  
ρ

m 
ρ

r  
        

 

It follows immediately that the maximum value for the start-up time of the reduce 

task is 

 

 

 

 can be 

(6.87) 

tr
max

  = A + D − σ φ nr+ τ   . (6.88)

  ρr  

 

We now plug the expression of the maximum value for the start-up time of the reduce task 

into the  

condition to meet the deadline  

ρm 

  

tm
0 

+ σ tr
max

 . (6.89)

 

n
m 

It follows immediately that n
mi n

 , the minimum number of slots for the map task, satisfies the condition

m          

nm
mi n 

 σρm 

,thus, nm
mi n

 = 

 σρm 

. (6.90) tr
max

 − tm
0 

 tr
max

 − tm
0 

The assumption of homogeneity of the servers can be relaxed and we assume that individual 

servers have different costs for processing a unit workload ρm
i
 = ρm

j
 and ρt

i
 = ρt

j
 . In this 

case we can use the minimum values ρm = min ρm
i
 and ρr = min ρr

i
 in the expression we 

derived. 
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 A Constraints Scheduler based on this analysis and an evaluation of the 

effectiveness of this scheduler are presented in. 

 

 

6.14 Resource management and dynamic application scaling 
The demand for computing resources, such as CPU cycles, primary and 

secondary storage, and net-work bandwidth, depends heavily on the volume of data 

processed by an application. The demand for resources can be a function of the time 

of day, can monotonically increase or decrease in time, or can experience 

predictable or unpredictable peaks. For example, a new Web service will experience 

a low request rate when the service is first introduced and the load will 

exponentially increase if the service is successful. A service for income tax 

processing will experience a peak around the tax filling deadline, whereas access to 

a service provided by Federal Emergency Management Agency (FEMA) will 

increase dramatically after a natural disaster. 
 

The elasticity of a public cloud, the fact that it can supply to an application 

precisely the amount of resources it needs and that users pay only for the resources 

they consume are serious incentives to migrate to a public cloud. The question we 

address is: How scaling can actually be implemented in a cloud when a very large 

number of applications exhibit this often unpredictable behavior [62,233,357]. To 

make matters worse, in addition to an unpredictable external load the cloud resource 

management has to deal with resource reallocation due to server failures. 

 

We distinguish two scaling modes: vertical and horizontal. Vertical scaling keeps 

the number of VMs of an application constant, but increases the amount of 

resources allocated to each one of them. This can be done either by migrating the 

VMs to more powerful servers or by keeping the VMs on the same servers but 

increasing their share of the CPU time. The first alternative involves additional 

overhead; the VM is stopped, a snapshot of it is taken, the file is transported to a 

more powerful server, and, finally, the VM is restated at the new site. 
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Horizontal scaling is the most common mode of scaling on a cloud; it is done by 

increasing the number of VMs as the load increases and reducing the number of 

VMs when the load decreases. Often, this leads to an increase in communication 

bandwidth consumed by the application. Load balancing among the running VMs is 

critical to this mode of operation. For a very large application, multiple load 

balancers may need to cooperate with one another. In some instances the load 

balancing is done by a front-end server that distributes incoming requests of a 

transaction-oriented system to back-end servers. 

 

An application should be designed to support scaling. As we saw in Section 4.6 in 

the case of a modularly divisible application, the workload partitioning is static, it is 

decided a priori, and cannot be changed; thus, the only alternative is vertical scaling. 

In the case of an arbitrarily divisible application the workload can be partitioned 

dynamically; as the load increases, the system can allocate additional VMs to 

process the additional workload. Most cloud applications belong to this class, which 

justifies our statement that horizontal scaling is the most common scaling mode. 

 

Mapping a computation means to assign suitable physical servers to the 

application. A very important first step in application processing is to identify the 

type of application and map it accordingly. For example, a communication-intensive 

application should be mapped to a powerful server to minimize the network traffic. 

This may increase the cost per unit of CPU usage, but it will decrease the computing 

time and probably reduce the overall cost for the user. At the same time, it will 

reduce the network traffic, a highly desirable effect from the perspective of the 

cloud service provider.  

 

 

To scale up and down a compute-intensive application, a good strategy is to 

increase or decrease the number of VMs or instances. Because the load is relatively 

stable, the overhead of starting up or terminating an instance does not increase 

significantly the computing time or the cost. 

 

There are several strategies to support scaling. Automatic VM scaling uses 

predefined metrics, e.g., CPU utilization, to make scaling decisions. Automatic 

scaling requires sensors to monitor the state of VMs and servers; controllers make 

decisions based on the information about the state of the cloud, often using a state 

machine model for decision making. Amazon and Rightscale 

(www.rightscale.com) offer automatic scaling. In the case of AWS the 

CloudWatch service supports applications monitoring and allows a user to set up 

conditions for automatic migrations. 

 

Nonscalable or single-load balancers are also used for horizontal scaling. The 

Elastic Load Balanc-ing service from Amazon automatically distributes incoming 

application traffic across multiple EC2 instances. Another service, the Elastic 

Beanstalk, allows dynamic scaling between a low and a high number of instances 

specified by the user. The cloud user usually has to pay for the more sophisticated 

scaling services such as Elastic Beanstalk. 
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